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1. Introduction 

 
The ability to resist failure by sliding within the inner portion of the mass of the soil is essentially among 

the geotechnical properties possessed by a soil to serve as foundation material. The shear resistance 

possessed by the foundation soil against failure through the surface of slippage due to imposed loading 

will influence the stability of any structure resting upon it [1]. Therefore, a deeper comprehension of the 

importance of shear strength properties of soil is highly essential for the analysis of the bearing capacity 

of soil foundation [2]. Furthermore, it is crucial for the stability analysis of slopes [3], the design of 

retaining walls and embankments for dams [4], tunneling excavation and linings [5], as well as for 
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providing sufficient resistance, traction, and tillage tools in agricultural purposes [6]. Mohr–Coulomb’s 

theory offers a generalized approach to determining the shear strength of soils. The theory claims that 

the shear strength parameters of soils (i.e., angle of internal friction and cohesion), which constitute the 

applied stress, influence the shear strength of soil proportionally [7], [8]. The slope (angle of internal 

friction), which is usually expressed in degrees, and the intercept (cohesion), described in N/m2, are 

the main determinants of the tangent to the Mohr–Coulomb failure envelopes [9], [10]. Field and 

laboratory experiments are both applicable in obtaining shear strength parameters of soil [11], [12]. 

However, the most employed laboratory methods for determining shear strength parameters are the 

triaxial compression test and the direct shear test. According to Ersoy et al. [8] and Aridsson and Keller, 

[13], conventional approaches to obtaining shear strength properties in the field and laboratory require 

a substantial investment of time, funds, and labor. Therefore, to minimize the cumbersome attributes 

associated with both approaches, it is of utmost importance to develop and employ soft computation 

models, which, in the long run, will replicate traditional methods with high accuracy.  

   On the other hand, statistical analysis and tools are crucial for predicting the geotechnical properties 

of soils. Consequently, these tools for modeling predictions of specific parameters in geotechnical 

engineering have been utilized to model various engineering properties of soils, particularly in 

situations constrained by financial limitations, the unavailability of test equipment, and limited time 

for design purposes [7]. Correlations and empirical equations were found to be reliable tools for 

determining the essentials in preliminary geotechnical studies, where the challenges above were 

encountered. This is particularly alarming in some developing countries, where state-of-the-art testing 

equipment is currently insufficient, combined with the scarcity of adequately equipped and well-trained 

personnel needed for its operation.  Over the last two decades, a broad and abrupt paradigm shift has 

occurred in research, spatially extending sparse and expensive soil measurements that previously 

focused on utilizing secondary information for the development of prediction models [12]. Empirical 

approaches are widely used in geotechnical engineering practice as tools for determining the 

engineering properties of soils. Aridsson and Keller, [13] and Musa and Dulawat,  [14] claimed that 

distinct correlations exist between the index properties obtained from simple routine testing and the 

strength properties of soils, among others. For determining the shearing strength parameters of soil, 

numerous empirical approaches have been developed over the years. Some of these models developed 

are: [15] for clay and silt embankments, [16] for Barind soils, [17] for peaty soils, and [18] for mudrock. 

In addition, researchers focused on developing models based on sustained hypotheses before estimating 

the actual model parameters. This is based on their assumption about how the input and output 

variables of the models are related [7], [8], [19]–[22].  

   However, these presumed models may not have the essential attributes needed. This gives rise to the 

advent of soft computing methods in developing robust models, where the data trend is allowed to 

evolve, and an appropriate model is becoming widely accepted [23], [24]. Little contribution has been 

made concerning the use of modelling tools for the prediction of shear strength parameters for shallow 

foundations. Instead, most of the available research focused on the effect of these soil parameters on 

construction activities. Studies by [25] and [26] have significantly contributed to establishing a practical 

correlation between soil geotechnical properties through in-situ testing, resulting in a notable decrease 

in construction project expenses. Moreover, their innovative approach includes the development of an 

Artificial Neural Network ANN model, which outperforms traditional regression methods in accurately 

predicting parameters such as the angle of friction and cohesion. Despite the general correlation 

between high plasticity index and lower effective friction angle in clays, some may exhibit higher 

effective friction angles, which contradicts this relationship [13].  While certain clays exhibit significant 

undrained shear strength that escalates with depth, they inherently possess a liquidity index exceeding 

100%, meaning their natural water content surpasses the liquid limit [27].  This also contradicts the 

typical associations that link undrained shear strength to liquid limit, as they assume that clays of this 

type have minimal undrained strength [27], [28]. Clay index properties are commonly employed in 

traditional methods for evaluating geotechnical parameters.  
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   For instance, [29] utilized the liquidity index for assessing undrained shear strength. This provides an 

avenue for employing the plasticity index to approximate the effective angle of friction, which nowadays 

is becoming a common practice in geotechnical engineering. However, these correlations exhibit 

significant limitations, which a novel method introduced by [30] bridges by establishing a connection 

between shear wave velocity and small-strain shear modulus, as well as index properties of saturated 

soft and firm clays. The method offers reliable predictions of the strength and stiffness of clays based 

on their index properties. At the same time, research by [31] indicates a strong correlation between 

undrained shear strength and liquid limit, plastic limit, bulk density, dry density, natural moisture 

content, and plasticity index. However, no significant correlation was found between specific gravity 

and the liquidity index. In addition, a recent study conducted by [32] suggests that granular soil, when 

used as a geofoam material, exhibits promising characteristics in handling shear stresses under various 

loading conditions compared to cohesive soil. To sum it all up, ensuring the structural stability of civil 

engineering foundations, regardless of the soil type, is critical, and it largely depends on the shear 

strength parameters of the foundation soil to prevent shear failure. However, analyzing these 

parameters is complex and time-consuming, posing significant challenges. Addressing these 

discrepancies by developing reliable models to predict the bearing capacity of soil foundations using lab 

and field data is quite meaningful. Thus, this research addresses this need by correlating observed shear 

strength data of shallow foundations with predictions from Artificial Neural Network (ANN) and 

Multiple Linear Regression (MLR) models, aiming to demonstrate the reliability and precision of these 

models in determining the bearing capacity of foundation soil, particularly for shallow foundations.  

2. Model Theory 

 

2.1 Artificial Neural Network (ANN) 

ANNs are computational models that mimic the human brain's method of processing information 

(Figure 1). They are composed of interconnected units called neurons, which are arranged into layers—

comprising an input layer, one or more hidden layers, and an output layer [33]. Neurons in one layer 

are linked to those in the next through weighted connections. During training, data is passed through 

these layers, and each connection is associated with a specific weight and bias. Neurons process this 

input by combining the weighted values and using a mathematical activation function that introduces 

non-linearity, enabling the network to detect and learn from complex data relationships [34]. ANNs are 

capable of uncovering patterns in data and generating accurate predictions. They are widely used in 

tasks such as image classification and speech processing. After one-layer processes the data, the 

resulting information is passed to the next layer for further computation [35]. 

 

 

 

 

 

 

 

 

 

 

Figure 1: ANN model structure 
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2.2 Multiple Linear Regressions (MLR) 

MLR is an extension of the standard regression approach that examines the relationship between a 

continuous dependent variable and two or more independent variables [36]. It assumes that the 

expected value of the dependent variable is a linear combination of the predictor variables (Figure 2). 

MLR is frequently applied in modelling and predicting the mechanical properties of construction 

materials [37]. Mathematically, the method fits a hyperplane within an n-dimensional space, where n 

corresponds to the number of independent variables. The model determines the unknown parameters 

by relating input (independent) variables to output (dependent) variables. 

 

 

 

 

 

 

 

 

 

Figure 2: MLR model structure 

3. Methodology 

3.1 Data Collection  

The research utilized secondary data sourced from the Department of Civil Engineering Library at Kano 

University of Science and Technology (KUST) in Wudil, Nigeria. This data, extracted from seven prior 

research studies, includes soil index properties and shear strength parameters (specifically cohesion (c) 

and angle of internal friction (ϕ). A total of 28 datasets were compiled according to depth increments. 

The information was gathered using the soil parameters, including Atterberg's limit, particle size 

distribution, specific gravity, and shear parameters. 

3.2 Development of Models Using MLR Technique And ANN 

The identified input variables were used to construct two distinct predictive models: an MLR model and 

an ANN model. The MLR model was developed using Microsoft Excel 2010 Pro, leveraging its 

regression analysis tool to establish a mathematical relationship between the dependent and 

independent variables (Figure 3). Conversely, the ANN model was created using MATLAB, which 

provided advanced computational capabilities for training, validating, and testing the network. The 

MLR technique assumes that a linear relationship exists between the predictor variables and the target 

variable, allowing for the formulation of a deterministic equation, as shown in Figure 2.  For the ANN 

model, a feedforward backpropagation network architecture was adopted, consisting of an input layer 

corresponding to the selected independent variables, one or more hidden layers with a specified number 

of neurons, and an output layer representing the predicted shearing strength parameters. The network 

was trained using a supervised learning approach, with the dataset divided into training, validation, and 

testing subsets to ensure generalization capability. Nonlinear transfer functions (e.g., tansig or logsig) 

were applied in the hidden layers. In contrast, a linear transfer function (purelin) was used at the output 

layer to capture both linear and nonlinear relationships. The development of these models aimed to 

compare the predictive performance of a traditional statistical approach (MLR) with that of a data-

driven intelligent system (ANN). This comparative analysis was expected to provide insights into the 
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adequacy of each modeling technique in accurately forecasting shearing strength parameters based on 

the defined input variables. 

3.3 Data Processing 

Multiple scatter plots are shown in a matrix style in a scatter matrix chart, a sort of data visualization. 

A visual summary of the pairwise associations between all variables in the dataset is provided by the 

complete matrix (Figure 4). In contrast, each scatter plot in the matrix illustrates the relationship 

between two variables in the dataset. A separate row represents each variable and column in a scatter 

matrix chart, and the scatter plots within the matrix illustrate the relationship between each pair of 

variables. The diagonal of the matrix displays a histogram or density plot for each variable, providing a 

visual representation of the distribution of values for each variable. The benefit of a scatter matrix chart 

is that it simplifies the identification of patterns, trends, and correlations by providing a rapid and 

thorough overview of the interactions between every variable in the dataset [1]. Because it enables the 

viewer to rapidly evaluate the relationships between all pairs of variables, rather than having to examine 

each pair separately, it is particularly beneficial when working with a large number of variables. 

 

Figure 3: Methodology Flowchart  
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Figure 4: Data Visualization chart 

3.4 Relative Statistical Measures of the Dataset 

Interval plots enable rapid mean comparison and evaluation of potentially significant differences by 

graphically representing confidence intervals for various groups. While non-overlapping intervals may 

indicate a statistically significant difference, overlapping intervals suggest similar means. Narrower 

intervals imply a more accurate estimate, whereas wider intervals show a less precise estimate [25]. 

Figures 5a-5f below illustrate the relationships between the considered parameters. Table 1 describes 

the basic statistical variables.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5a: Distribution of Unit weights 
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Figure 5b: Distribution of Plasticity Index 

 

 

 

 

 

 

 

 

 

 

Figure 5c: Distribution of % fines 

 

 

 

 

 

 

 

 

 

 

 

Figure 5d: Distribution of cohesion 
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Figure 5e: Distribution of the Angle of internal friction 

 

 

 

 

 

 

 

 

 

 

Figure 5f: Trend of all input parameters  

 

Table 1. Statistical properties of the dataset. 

Unit Weight 

(kN /m3) 

Unit Weight 

(kN/m3) 

Plasticity 

Index (PI) 

Percentage of 

fines (%) 

Cohesion 

(kN/m2) 

Angle of internal 

friction (𝜽) 

Mean 16.6382 10.2221 20.3059 24.8821 22.6786 

Standard Error 0.46269 0.96835 2.5111 1.7369 1.3481 

Median 17.79 10.95 18.99 23.5 22 

Mode 18 0 28.8 24 30 

Standard 

Deviation 

2.4483 5.1240 13.2878 9.1908 7.1339 

Sample 

Variance 

5.9943 26.2559 176.5654 84.4712 50.8929 

Kurtosis -1.1404 0.2960 1.3929 -0.5323 -1.2051 

Skewness -0.7004 -0.6883 0.93764 0.51835 0.1091 

Range 6.94 19 57.468 35 25 

Minimum 13 0 0.132 10 10 
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Maximum 19.94 19 57.6 45 35 

 

Table 2. The Pearson correlation matrix 

  Unit Weight 

(kN/m3) 

Plasticity 

Index (PI) 

Percentage of 

fines (%) 

Cohesion 

(kN/m2) 

Angle of internal 

friction (𝜽) 

Unit Weight 

(kN/m3) 

1         

Plasticity Index 

(PI) 

0.252954294 1       

Percentage of 

fines (%) 

-0.014223516 0.047214755 1     

Cohesion 

(kN/m2) 

-0.159279248 0.424170356 0.017043187 1   

Angle of internal 

friction (𝜽) 

0.121978781 -

0.265327026 

0.070481846 -0.36471865 1 

 

3.5 Pearson Correlation Matrix 

The Pearson correlation matrix is a widely used statistical tool that provides insight into the degree of 

linear association between pairs of variables in a dataset. Each element of the matrix represents the 

correlation coefficient (R) between two variables, with values ranging from −1 to +1. A value of +1 

indicates a perfect positive correlation, meaning that as one variable increases, the other increases 

proportionally (Table 2). Conversely, a value of -1 1signifies a perfect negative correlation, where a rise 

in one variable results in a proportional decrease in the other. In the present study, the correlation 

matrix was computed to identify the strength and direction of associations between the input variables 

(such as soil properties, loading conditions, and shearing parameters) and the dependent variables 

related to bearing capacity. This analysis is instrumental in highlighting potential multicollinearity 

issues among independent variables, which may affect the performance of regression-based models 

such as MLR. Furthermore, the correlation matrix provides preliminary insights into the relative 

influence of input variables on the output, serving as a guide for model development. For instance, 

variables that exhibit strong positive or negative correlations with the shearing strength parameters are 

likely to play a significant role in predictive modeling. On the other hand, weak correlations suggest that 

such variables may have a limited or indirect effect. By employing the Pearson correlation matrix, this 

study ensures that the relationships among variables are systematically examined before advanced 

modeling with MLR and ANN techniques, thereby improving the reliability of the developed models. 

3.6 Hyper-parameter Tuning Process in ANN 

In this study, the ANN was designed and optimized through systematic hyperparameter tuning to 

achieve the best predictive performance for estimating the shearing strength parameters. The adopted 

network architecture was a multilayer perceptron (MLP), consisting of an input layer, a single hidden 

layer, and an output layer. After several trials, a hidden layer configuration with nine neurons was 

selected because it produced the lowest absolute percentage error for both training and testing datasets  

[3].  Each neuron in the hidden layer was fully connected to the neurons in the preceding and 

subsequent layers through weighted connections. These weights served as adjustable parameters, 

continuously updated during training to minimize the error between predicted and actual outputs. The 

output layer neurons generated the final network predictions corresponding to the shearing strength 

parameters. 
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   The Levenberg–Marquardt (LM) optimization algorithm was employed for training, as it combines 

the speed of the Gauss–Newton method with the stability of gradient descent. This algorithm is widely 

preferred for medium-sized networks due to its efficiency in minimizing the error function. To update 

the weights, the backpropagation algorithm was applied, which propagates the prediction error 

backward from the output to the hidden layer, iteratively adjusting the weights to reduce the overall 

error for each training pattern  [3].  A sigmoid transfer function (log-sigmoid) was used in the hidden 

layer to introduce nonlinearity into the model, thereby enabling the ANN to capture complex, nonlinear 

relationships between input variables and outputs. In the output layer, a linear transfer function was 

adopted to produce continuous numerical predictions. Hyperparameters such as the learning rate and 

momentum rate were carefully tuned. The learning rate controlled the step size during weight updates, 

balancing the trade-off between convergence speed and stability. The momentum rate helped the model 

avoid local minima by incorporating a fraction of the previous weight update into the current 

adjustment, thus improving convergence efficiency. The network was trained iteratively, with 

performance monitored using training, validation, and testing datasets. Overfitting was controlled by 

observing validation error trends, and the final configuration was chosen to ensure both accuracy and 

generalization capability. 

4. Results of the Models Developed  

Figures 6a-6d present the correlations between observed and predicted values of shear strength 

parameters. The graph was plotted for training data, testing data, and validation datasets, particularly 

for the ANN. The best line fit was drawn to examine the model’s effect on systematic and random error. 

The output was presented as a function of targeted results and R value, also expressed as derived from 

the R2 value. 

 

 

 

 

 

 

 

 

 

 

Fig. 6a: Correlation between observed and MLR estimated values of shear strength parameters 

 

Figure 6b: Correlation between observed and MLR estimated values of the angle of internal friction 

 



Techno-computing Journal (2025)  
 Awaisu S. Ibrahim et al.  

 

51 
 

 

Figure 6c: Correlation between observed and ANN estimated values of shear strength parameters 

 

 

Figure 6d: Correlations between observed and ANN-predicted values of the angle of internal friction 

4.1 Comparison of the ANN Models  

Figure 7a shows a comparison of the observed and predicted values of cohesion using an ANN. The 

chart indicates a strong relationship between the observed and predicted values, with some variations. 

Significant variation was observed in sample 10, where the expected value is more than twice the 

observed. Similarly, there is a higher decrease in predicted values for samples 21 and 22. In Fig. 7b, the 

observed and predicted values of the angle of internal friction using ANN are presented. As shown in 

the cohesion in Fig. 7a, the values of the internal friction angle exhibit a similar prediction capability to 

that of the ANN, albeit with some slight variation between the observed and predicted values. In sample 

10, the predicted value is almost three times that of the observed. Additionally, Samples 9, 25, and 28 

also exhibit a significant increase in predicted values, whereas Samples 21 and 22 display higher 

observed values compared to their predicted counterparts.  
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Figure 7a: Comparison between observed and predicted values of cohesion using ANN 

 

 

Figure 7b: Comparison between observed and predicted values of the angle of internal friction from 

ANN 

4.2 Comparison of the MLR Models  

Figure 8a presents the relationship between observed and predicted values of cohesion using MLR. The 

model exhibits better performance, albeit with some significant variation, in samples 9, 10, 16, 21, 22, 

25, 26, and 28. In samples 9, 10, 25, and 28, the predicted values are significantly higher than the 

observed, and vice versa in samples 16, 21, 22, 25, and 26. In Figure 8b, a comparison between the 

observed and predicted values of the angle of internal friction using MLR was presented. The model 

generally performs well, but there are noticeable differences in samples 9, 10, 16, 21, 22, 25, 26, and 28. 

Specifically, in samples 9, 10, 25, and 28, the predicted values are significantly higher than the observed 

ones, while in samples 16, 21, 22, 25, and 26, the predicted values are notably lower. 

 

 

  

 

 

 

 

Figure 8a: Comparison between observed and predicted values of cohesion using MLR 
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Fig.8b: Comparison between observed and predicted values of angle of internal friction using MLR 

Table 3.0: Performance criteria of the models developed for both observed and predicted values 

ANN 
 

R2 MSE RMSE R 
A 0.9749 17.0160 4.1250 0.9874 

B 0.9499 26.5235 5.1500 0.9746 

MLR 
 

R2 MSE RMSE R 

C 0.8788 82.3801 9.0763 0.9374 

D 0.9141 44.8042 6.6935 0.9561 

Where A and B represent the performance criteria for the of actual and predicted cohesion and angle of internal friction obtained from ANN, while C and D represent the 
details of the performance criteria of actual and predicted cohesion and angle of internal friction obtained using MLR. 
 

In general, the R2 values of groups A and B were better than those of groups C and D, indicating that 

the ANN model provides a better prediction for the testing set than the training data compared to MLR, 

although the variation is tolerable. The combination of the transfer function component trans-sigmoid 

and the linear function yields better results. Again, the multiple linear regression shows a good 

correlation between the input and output parameters; the coefficients of correlation for cohesion and 

angle of internal friction, R², were 0.8789 and 0.91415, respectively. This proves that the linearity in 

the data was better. Moreover, the R2 results show the robustness of the models and that the 

independent variables have excellent correlation with the dependent. To estimate the shear strength 

parameters, three additional evaluation criteria (MSE, RMSE, and R) were used to identify the best-

fitting regression line for both MLR and ANN. The RMSE, being an error measure, has the added 

significance that minor errors are given less concern than significant errors. However, according to [38] 

and [39]. Other evaluation parameters should be used in addition to the error measure RMSE to achieve 

higher accuracy. 

5.0 Conclusion 

This study investigated the predictive capacity of Artificial Neural Networks (ANN) and Multiple Linear 

Regression (MLR) models in estimating the shear strength parameters of soils using readily available 

soil index properties. The development of these models was grounded in actual experimental data, 

which served both training and validation, ensuring that the predictive outcomes remained realistic and 

reliable. The results demonstrated that both MLR and ANN were able to capture the relationships 

between soil index properties and shear strength parameters with a satisfactory degree of accuracy. 

While the MLR model provided a straightforward linear representation of the underlying relationships, 

the ANN model offered flexibility to account for nonlinear dependencies, thereby yielding improved 

precision in several cases. The close agreement observed between the predicted values and the 

experimental results underscores the robustness of both modeling approaches.  A notable advantage of 

these models lies in their reliance on simple soil index properties, which are relatively straightforward, 

cost-effective, and easily determined in geotechnical practice. By using such data as input, the models 

significantly reduce the need for expensive and time-consuming laboratory shear strength tests, without 
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compromising the reliability of predictions. The graphical comparisons between predicted and 

experimental results further confirmed the consistency of the models, with both methods showing a 

substantial degree of similarity to observed behavior. The findings also highlight that numerical 

modeling offers a practical alternative for estimating shear strength parameters in scenarios where 

time, resources, or accessibility may limit direct experimental determination. In particular, the ANN 

model’s capability to handle nonlinear patterns gives it an edge in predicting complex soil behavior, 

making it a valuable tool for practitioners and researchers. In conclusion, both MLR and ANN provide 

efficient, precise, and practical tools for predicting soil shear strength parameters. Their successful 

application in this study demonstrates their potential for broader adoption in geotechnical engineering 

design and analysis. By integrating such models into routine practice, engineers can enhance decision-

making processes, optimize foundation design, and improve the reliability of geotechnical evaluations. 

Future studies may further refine these models by incorporating additional variables, larger datasets, 

and advanced learning techniques, thereby strengthening their predictive capability and generalization 

across diverse soil conditions. 
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