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1. Introduction 

As global energy demands continue to rise and sustainability becomes a top priority, efficient cooling 

systems are more essential than ever. The cooling capacity (Qe) measures a system’s ability to remove 

heat from its environment. Yet, it plays a crucial role in applications ranging from residential air 

conditioning to large-scale industrial facilities [1]. The Qe is a critical way of maintaining the 

functionality and efficiency of various industrial and commercial operations, such as data centers, 
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manufacturing facilities, Heating, Ventilation, and Air Conditioning (HVAC) systems. These systems 

are designed to regulate temperature and humidity levels, ensuring that each equipment operates 

within safe thermal limits [2]. Predicting Qe performance involves using advanced algorithms and data-

driven models to forecast key operational metrics, such as temperature trends and potential system 

failures [3]. Accurate predictions of Qe will optimize energy usage, improve system reliability, and 

extend equipment lifespans. In temperature-sensitive industries, such as semiconductor manufacturing 

and food storage, effective Qe prediction directly impacts product quality and operational costs [4].  One 

of the key challenges with Qe systems is their high energy demand to maintain optimal temperatures. 

Large-scale systems require significant energy, affecting environmental sustainability and increasing 

operational costs. Inconsistent maintenance practices can lead to equipment wear and tears, resulting 

in efficiency losses and unplanned failures. Environmental factors, such as seasonal changes, further 

complicate Qe performance by forcing systems to work harder, ultimately reducing operational 

efficiency [5]. Predicting Qe performance is challenging due to highly dynamic operating environments, 

where factors like fluctuating external temperatures and variable humidity levels can significantly 

impact efficiency [6]. Physical components, such as compressors, fans, and heat exchangers, also 

experience gradual wear, affecting system performance over time. Another challenge is data 

management complexity; Qe systems generate vast sensor data that may contain noise or missing 

values, making accurate data processing and interpretation difficult [7,8]. Traditional modeling 

methods often struggle to capture the nonlinear and time-dependent relationships inherent in Qe 

operations, leading to suboptimal predictions and increased operational risks [9]. Despite their 

importance in maintaining safe temperatures and equipment protection, Qe systems often face energy 

consumption and efficiency challenges due to fixed settings that cannot adapt to environmental changes 

or inconsistent demands in real time. This results in inefficient energy usage, frequent overcooling, and 

increased operational costs[10]. 

      Applying artificial intelligence (AI) and machine learning (ML) methods to enhance Qe performance 

has become a prominent research area. Many studies, such as Zhang et al., have explored different 

models to improve efficiency. [11]  which validated the use of Long Short-Term Memory (LSTM) models 

in forecasting cooling load demands, demonstrating their superiority over traditional regression models 

in accuracy. Similarly, LSTM models have been employed for temperature prediction within Qe 

systems, with their ability to capture long-term dependencies in data streams leading to more reliable 

predictions of peak loads, thereby enabling smoother energy distribution and reduced operational costs 

[12]. The studies highlighted LSTM’s suitability for cyclical load requirements, showcasing its 

advantages in settings where demand fluctuates over time. In another study by Choubani et al. [13], 

explored the energy-saving potential of evaporative cooling systems, especially in arid climates. Lei et 

al. revealed significant reductions in energy consumption compared to conventional air conditioning 

systems [14], RF (Random Forest) models have been applied to analyze Qe data in commercial 

buildings, identifying key operational variables, such as ambient temperature and humidity, as critical 

factors influencing cooling performance; furthermore, Romdhane et al. [15] has discussed using phase 

change materials (PCMs) in cooling applications, showing that PCMs can enhance Qe efficiency by 

storing and releasing thermal energy during peak demand periods. A comprehensive review of vapor 

compression systems has emphasized the need for improved refrigerators and system designs to 

enhance performance while minimizing environmental impact. 

Moreover, Li and Yao [16] have demonstrated the application of RF models in predicting cooling 

energy demand, indicating that RF models offer a cost-effective and interpretable solution for Qe 

prediction. Verma et al. [16] developed Qe as a sustainable approach to urban cooling, highlighting the 

benefits of centralized cooling plants in reducing overall energy consumption and operational costs 

across multiple buildings. Support Vector Machines (SVM) have also been utilized to identify anomalies 

in Qe operations, categorizing data patterns into normal and fault states, proving effective for early 

failure detection and timely interventions [17]. Integrating renewable energy sources, such as solar 

power  [18], into Qe systems has significantly decreased reliance on conventional energy sources and 

reduced operational costs  [19]. AI and ML models can optimize system performance and reduce energy 

waste by predicting cooling demands based on historical data. Implementing AI in Qe methods offers 
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substantial long-term benefits, allowing businesses to reduce energy consumption, minimize 

environmental impact, and maintain precise temperature control for critical spaces, including 

laboratories. With AI integration, cooling systems evolve from static, one-size-fits-all solutions into 

intelligent systems capable of meeting specific cooling needs efficiently. Advancements in AI methods 

promise to transform Qe, setting new benchmarks for flexibility, competence, and cost-efficiency across 

various industries. AI models provide transformative techniques for Qe prediction and optimization. AI 

models can process large datasets through ML algorithms, including historical performance data, 

environmental conditions, and energy consumption data [20]. ML models can analyze complex 

relationships among factors to make highly accurate real-time predictions for cooling systems. This 

capability allows AI models to adjust cooling settings, adapt to changing demands, conserve energy, and 

reduce costs. The primary objective of the current study is to develop and validate ML models, including 

LSTM and RF, for precise modeling of cooling system efficiency using environmental data obtained 

from surveys based on a solar-powered vapor absorption refrigeration system (VARS) integrated with 

latent heat energy storage tailored to the Riyadh city climate. By reducing the need for extensive 

experimental work, applying Qe can be accelerated using computational methods such as ML 

approaches. 

2. Material and Methods  

2.1 Data Sources and Variability  

It’s paramount to understand that data pre-processing is a crucial first step to ensure the quality and 

reliability of the input data[21,22]. This includes handling the missing values, removing outliers, and 

encoding the selected variables if they are present. Ensure the research data is good, clean, and ready 

to take out the modeling of the employed models, RF and LSTM. Moreover, a fuzzy sensitivity analysis 

was conducted to determine the best model combination. The data used in the current study contains 

8760 instances, and it was obtained through a survey based on a solar-powered vapor absorption system 

integrated with latent heat energy storage tailored in Riyadh city of Saudi Arabia. The current study 

comprises some key components like ambient temperature (TA), Relative humidity (Phi), Coefficient of 

Performance (COP), Efficiency of the absorber (effa), Efficiency of the desorber (effd), Mass flow 

rate(mu), specific temperature measurement point(T20), Water inflow rate (win), Mass flow rate of 

water (Mwater), and the target variable which is Cooling capacity of the evaporator (Qe).  

2.2 Data Pre-processing and Sensitivity Analysis  

Data pre-processing is crucial in every ML modeling technique; it allows raw data to be prepared for 

training in any network system[23,24]. The method involves data cleaning to understand the linearity 

and remove unnecessary variables from the data set. This study cleaned up data by classifying and 

eradicating unwanted columns. All the missing values were to be filed out, letting the category data 

change to a numerical set. The normalization equation is presented in Equation 1. The main idea is to 

use the input variables based on fuzzy sensitivity analysis to estimate the levels of the output variables 

accurately, while Table 2 presents the sensitivity analysis result.  

𝑦 =  
𝑥−  𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑥maximum −  𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚
                                                 (1) 

where x is labeled as measured data, and xmin, and xmax are the minimum and maximum facts, singly. 

However, Equation 2 produces the input article grouping that will be used as inputs in the modeling RF 

and LSTM models. These combinations were selected based on correlation analysis, highlighting the 

significance of the exergy system. Thus, each of these combinations was trained and tested with both 

models. 

     𝑄𝑒   =

𝑀1 =   𝑇20 + 𝑃ℎ𝑖 + 𝐶𝑜𝑝                                                                       
𝑀2 = 𝑇20 + 𝑃ℎ𝑖 + 𝐶𝑜𝑝 + 𝑚𝑢 + 𝑒𝑓𝑓𝑑 + 𝑒𝑓𝑓𝑎                                                            

𝑀3 =  𝑇20 + 𝑃ℎ𝑖 + 𝐶𝑜𝑝 + 𝑚𝑢 + 𝑒𝑓𝑓𝑑 + 𝑒𝑓𝑓𝑎 + 𝑚𝑤𝑎𝑡𝑒𝑟 + 𝑇𝑎 + 𝑤𝑖𝑛
                                                    

   (2) 
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However, a sensitivity analysis test is used to regulate how different input variables impact the 

output of a model. It helps identify which inputs are the most influential, how much uncertainty in the 

inputs affects the results, and whether the model is robust to changes in input values. Fuzzy Sensitivity 

Analysis is a technique used to understand how changes in the input variables of a fuzzy system affect 

its output. In different systems [25]. This is important for improving system performance and decision-

making in uncertain environments, such as climate modeling, financial forecasting, or control systems. 

In fuzzy sensitivity analysis, one of the common approaches is to evaluate how small changes in the 

inputs lead to variations in the output [26]. Fuzzy sensitivity analysis can help determine how that 

change influences the fuzzy logic output, like a control signal for a Qe. Fuzzy sensitivity analysis is widely 

applied in engineering, economics, and environmental science, where systems have uncertain or 

imprecise data. It can be beneficial in systems like predictive maintenance for Qe, where inputs such as 

temperature, humidity, and pressure may not always be precise but still need to be considered for 

optimal performance [27]. However, sensitivity analysis, a measured method used to determine how 

different values of an input variable can impact an actual output variable under a given set of 

assumptions, is a critical tool for assessing the robustness and reliability of models and predictions.  

3.  Model Building  

 The AI models employed for Qe prediction involved a comprehensive approach, including model 

building, pre-processing, and normalization. The performance of these models was evaluated using 

various metrics such as the Coefficient of Determination (R²), Correlation Coefficient (R), Mean 

Squared Error (MSE), and Root Mean Squared Error (RMSE). The primary goal of the modeling 

techniques was to predict Qe with high accuracy and to serve as effective methods for enhancing Qe 

predictions. The current research utilized LSTM and RF algorithms due to their promising performance 

in handling large datasets and capturing complex relationships. The robustness of the prediction 

models was ensured through a process involving calibration and validation of the research data, where 

80% of the data was used for validation and 20% for calibration. This approach aimed to maintain a 

balanced and unbiased evaluation of model performance. Pre-processing techniques were employed to 

remove noise and scale the data, thereby improving data stationary and enhancing model accuracy. 

Data pre-processing included techniques such as data normalization, missing value treatment, and 

noise reduction to ensure high-quality input for model training. The proposed modeling schema, as 

depicted in Figure 1, outlines the systematic data preparation and modeling process. The rationale for 

splitting the data into calibration and validation sets was to prevent data leakage and ensure that the 

models generate reliable and accurate predictions. By integrating the calibration and validation phases, 

this study developed a precise prediction model for Qe estimation, thereby minimizing over-fitting and 

improving the generalization capability of the models. This comprehensive approach allowed the LSTM 

and RF models to learn effectively from the data, providing robust and reliable Qe predictions that can 

be applied in various real-world scenarios. 

3.1 Random Forest (RF) 

RF is an ensemble learning method for classification and regression tasks. It builds multiple decision 

trees during training and combines their outputs to make more accurate and stable predictions see 

Figure 2. The core idea behind RF is to improve the performance and reduce the overfitting tendency 

of individual decision trees by aggregating their results [28]. This RF approach increases model 

robustness, particularly in handling large datasets with complex structures. RF operates using two main 

techniques: random feature selection and During the training phase, RF creates each decision tree using 

a different bootstrapped dataset sample, ensuring diversity among the trees [29]. Also, at each node 

split, only a random subset of. Each tree in the forest is trained on a randomly sampled subset of the 

training data, drawn with replacement. Moreover, when splitting nodes within a tree, Random Forest 

considers a random subset of features rather than all available features [30].  
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Figure 1: Proposed modeling schema involved in the current study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: RF architecture. 

3.2 Long Short-Term Memory (LSTM)  

LSTM networks are Recurrent Neural Networks (RNN) designed to learn and retain long-term 

dependencies in sequential data. Unlike traditional RNN, which struggles with disappearing and 

exploding gradient problems, LSTM uses a unique architecture that enables it to capture patterns over 

extended sequences effectively [31]. This makes LSTM mainly suitable for tasks where relationships 

between distant elements in a sequence are critical, such as time series predicting and natural language 

processing. LSTM has been widely applied in various fields, including speech recognition, financial 

modeling, and predictive maintenance (Figure 3). LSTM’s ability to model long-term dependencies 

makes them particularly effective in Qe performance prediction, where historical data plays a significant 

role in forecasting future system behavior [32]. The LSTM architecture consists of memory cells and 
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three gating mechanisms. The forgetting gate decides which information from the previous cell state 

should be discarded, while the input gate determines which new information should be added. The 

output gate controls what part of the current cell state is passed to the next hidden state [33]. 

 

 

 

 

 

 

 

 

 

Figure 3: Schematic architecture of LSTM. 

3.3 Model Validation and Performance Evaluation Criteria 

The validation of AI models is crucial in ensuring that the employed models are reliable and capable of 

making accurate predictions on unseen data[34]. Effective model validation helps prevent overfitting 

and estimates how well the model will generalize to new datasets. This process establishes criteria and 

measurements to evaluate the models’ predictive performance, efficiency, and quality. Such criteria 

form the basis for assessing model performance and assist decision-makers in making well-informed 

choices about model promotion or further improvements [35]. In the current study, various metrics 

were utilized to evaluate model performance. These metrics measured different aspects of the models, 

including accuracy, error, uncertainty, and the model’s ability to generalize to unseen data. Four key 

statistical measures were employed: the R, R², MSE, and RMSE (Table 1). These metrics were chosen 

to comprehensively assess how well the models captured data trends, minimized prediction errors, and 

maintained reliability across different data segments. Table 1 presents the formulas for these 

performance criteria, illustrating the mathematical basis for evaluating model performance. Including 

these metrics ensures a robust evaluation framework, highlighting the strengths and areas for potential 

improvement within the predictive models. Using these statistical measures, the study could objectively 

assess the accuracy and reliability of the AI models, guiding further refinement and optimization to 

achieve the best possible predictive performance [36]. 

Table 1: Performance evaluation indicators 

Name Formula Range 

 
R2 
 

 1 −
∑ [(𝑌)𝑜𝑏𝑠.𝑗 − (𝑌)𝑐𝑜𝑚.𝑗] 

2 𝑁
𝑗=1

∑ [(𝑌)𝑜𝑏𝑠.𝑗 − (𝛾)𝑐𝑜𝑚.𝑗] 
2 𝑁

𝑗=1

 

 

(− 1 < R< 1) 

R ∑ [[𝑌𝑜𝑏𝑠.𝑖 − 𝛾𝑜𝑏𝑠.𝑖][[𝑌𝑐𝑜𝑚.𝑖 − 𝛾𝑐𝑜𝑚.𝑖]𝑁
𝑖=1

√∑ [[𝑌𝑜𝑏𝑠.𝑖 − 𝛾𝑜𝑏𝑠.𝑖]2[[𝑌𝑐𝑜𝑚.𝑖 − 𝛾𝑐𝑜𝑚.𝑖]2𝑁
𝑖=1

 
(0 < R < 1) 

MSE 1

    𝑁
 ∑ [𝑌𝑜𝑏𝑠.𝑖 − 𝑌𝑐𝑜𝑚.𝑖] 

2 𝑁
𝑖=1  (0 < MSE < ∞) 
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where N provides the number of instances in the dataset, Yobsi means the observed value, Ycomi designates 

the predicted value, and Ycomi is the predicted mean of the instances. 

4. Applications Result and Analysis 

However, Figure 4 presents the sensitivity analysis results using the Neuro-fuzzy Technique, whereby 

the first modeling schema Combination (C1) comprises T20, Phi, and Cop. However, the second 

modeling combination (C2) contained T20, Phi, and Cop, mu, effd, and effa. The third modeling 

combination is (C3), T20, Phi, Cop, mu, effd, effa, mwater, Ta, and win. Hence, this group of input 

variables was taken out based on the sensitivity analysis in the table below. Moreover, Figure 4 presents 

a sensitivity analysis ranking variables based on their RMSE, revealing the relative impact of each on 

model performance. The variable effd, with the lowest RMSE (0.005127), ranks first, indicating its high 

sensitivity and influence on prediction accuracy, while win, with the highest RMSE (0.304908), ranks 

lowest, suggesting minimal impact. The top-ranking variables, for instance, effd, effa, and mwater, 

demonstrate the most decisive influence on the model, making them critical for tuning efforts. Variables 

such as mu, T20, and COP occupy the middle ranks, reflecting moderate sensitivity. In contrast, Phi, Ta, 

and Win have higher RMSE values, indicating they are less impactful. These findings suggest that 

optimizing low-RMSE variables would enhance model accuracy, while adjustments to high-RMSE 

variables would have a limited effect, thus prioritizing key variables for model optimization. The 

findings of this study can be applied to optimize energy-efficient cooling systems by prioritizing key 

variables that significantly impact performance. The sensitivity analysis helps refine control strategies 

for HVAC systems, ensuring improved energy management by focusing on critical parameters such as 

effd, effa, and mwater. Also, industries can leverage these insights to develop predictive maintenance 

models, enhancing system reliability and reducing operational costs. Lastly, the superior performance 

of the RF model suggests its potential application in smart building automation, where accurate cooling 

load predictions enable real-time energy optimization. 

 

Figure 4. Sensitivity analysis graphical presentation based on their RMSE ranking 

The boxplot shows the distribution and variability of different variables regarding their 

normalized sensitivity or predictive impact, providing visual insight into their range, central tendency, 

and spread (Figure 5a). Variables such as COP, effa, and effd exhibit a wide range with large 
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√
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𝑖=1

𝑁
 

(0 < RMSE < ∞) 



Techno-computing Journal (2025)  
 Ismail A. Mahmoud et al.  

 
 

8 
 

interquartile spreads, suggesting significant variability in their influence on the model. Mwater and mu 

show relatively minor ranges, indicating more stable or consistent sensitivity. Phi, T20, Ta, and Win 

demonstrate moderate to high variability but with distinctive differences in their medians and outlier 

behavior. Notably, Win appears to have lower median sensitivity, further confirming its limited impact 

compared to other variables. The presence of outliers, especially for COP and effa, indicates instances 

where their impact deviated significantly from the typical range, emphasizing the need to explore 

potential causes of such behavior in model responses. Visualization highlights each parameter’s diverse 

sensitivity and stability characteristics, guiding focus on more influential and consistent variables for 

model improvement. 

Figure 5b shows the histogram plot that provides a comprehensive view of the distribution of 

various variables, offering insight into their frequency and concentration across different normalized 

sensitivity ranges. The distribution for COP shows a dominant peak at the lower end, suggesting a high 

frequency of low-sensitivity occurrences, indicating a limited impact on the model in most cases. The 

effa and effd exhibit more balanced distributions with higher frequencies in the middle ranges, implying 

a moderate but consistent influence across different instances. Mwater, mu, phi, and T20 show a more 

dispersed distribution with smaller peaks across various intervals, highlighting their variable impact. 

The ta demonstrates a noticeable frequency peak, indicating a consistent influence around its sensitivity 

value. At the same time, Win has a skewed distribution towards lower frequencies, reinforcing its 

limited influence compared to others. The relatively flat distribution for Qe implies its spread of impact 

is more uniform across various levels. The distribution analysis helps understand the frequency and 

relative significance of each parameter’s influence on model performance, guiding a more targeted 

approach for model enhancement and optimization. 

 

Figure 5: (a) boxplot showing some of the statistical variables (b) distribution plot of the raw data used 

in this study 
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4.1 Predictive Model Result  

This study employed two ML models, RF and LSTM, to predict Qe. Each of these models was utilized 

with three different input combinations, designated as C1, C2, and C3, to enhance the robustness and 

accuracy of predictions. Data processing was conducted using E-Views 13.0, while the LSTM model was 

implemented through Python code due to its capacity to capture temporal dependencies. Conversely, 

the RF model was built using R Studio version 4.2.2, benefiting from its strength in handling non-linear 

relationships and reducing overfitting. Table 2 presents the models’ calibration and verification phase 

results, with their performance evaluated using various metrics. These metrics offered insights into how 

well the models fit the data and their ability to generalize predictions across different data sets[37,38]. 

The results demonstrate each model’s capability, highlighting strengths and areas for improvement in 

the predictive process. This comparative analysis supports ML approaches’ optimal selection and 

refinement for accurate and reliable system predictions[39]. 

Table 2: Result of the ML models for both Calibration and verification. 

  
 Calibration Phase 

 
Models R R2 MSE RMSE 

LSTM-M1 0.9970 0.9985 35.9373 5.9948 

LSTM-M2 0.9976 0.9988 35.9416 5.9951 

LSTM-M3 0.9976 0.9988 35.9504 5.9959 

RFM-M1 0.9977 0.9988 35.9464 5.9955 

RFM-M2 0.9977 0.9988 35.9479 5.9957 

RFM-M3 0.9977 0.9988 35.9479 5.9957 

  
Verification Phase 

 
Models R R2 MSE RMSE 

LSTM-M1 0.7961 0.8923 14.4328 3.7991 

LSTM-M2 0.7987 0.8937 14.4244 3.7980 

LSTM-M3 0.7994 0.8941 14.4299 3.7987 

RFM-M1 0.9335 0.9662 14.4514 3.8015 

RFM-M2 0.9333 0.9661 14.4505 3.8014 

RFM-M3 0.9333 0.9661 14.4506 3.8014 

 

The results indicate that the employed models, LSTM and RF, exhibited exceptional 

performance with high R and R² values during the training validation phase. Specifically, the LSTM 

model using combinations C1, C2, and C3 achieved R values ranging from 0.9970 to 0.9976 and R² 

values consistently above 0.9985, demonstrating a strong fit to the training data. Similarly, the RF 

model showed comparable performance with R values around 0.9976 and R² values close to 0.9988. 

These high values indicate that both models effectively captured the underlying patterns in the data 

with minimal error. Furthermore, the MSE and RMSE values for all models remained within a narrow 

range, with the lowest RMSE around 5.99, underscoring their high accuracy during training. The testing 

phase provided critical insight into the model’s generalization ability to unseen data. In this phase, the 

RF model outperformed the LSTM model, achieving a higher R-value of 0.9661. In contrast, the LSTM 

models recorded R values ranging from 0.7961 to 0.7994, corresponding R² values between 0.8922 and 

0.8941. Despite the lower R² values for the LSTM models during testing, their performance remained 

consistent, as evidenced by similar MSE and RMSE values across both training and testing phases. 

Figure 6 presents the cumulative probability graph between the observed and computed Qe in training 

and testing. Notably, the RMSE values for both models during testing were below 3.80, indicating good 

predictive accuracy. While both models demonstrated strong performance in training and testing, the 
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RF model showcased superior generalization capability. This advantage can be attributed to the 

ensemble nature of RF, which enhances robustness and mitigates over-fitting. On the other hand, the 

slightly weaker performance of the LSTM models during testing may be due to their sensitivity to 

hyperparameter tuning. Nonetheless, the comparable RMSE values of both LSTM and RF during testing 

suggest similar predictive accuracy. However, the analysis underscores that the RF model exhibits 

better generalization, making it more reliable for real-world applications where unseen data variability 

exists in cooling system prediction. Future research should focus on fine-tuning LSTM hyperparameters 

or integrating hybrid approaches to enhance model robustness and predictive accuracy. The radar plot 

illustrated in Figure 7 visually represents multivariate data on a two-dimensional chart, often called a 

spider chart. It consists of a series of equiangular spokes radiating from a central point, each 

representing a distinct variable. A shape is formed by plotting variable values along these spokes and 

connecting the data points, visually depicting relationships and patterns within the dataset. This 

graphical representation provides an intuitive overview of the model’s performance and data variability. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Cumulative Probability graph for training and testing values. 

The RMSE values during the verification phase indicate the predictive accuracy and 

generalization capabilities of the LSTM and RF models when applied to unseen data. Among the LSTM 

models, LSTM-M2 had the lowest RMSE at 3.7980, closely followed by LSTM-M3 at 3.7987 and LSTM-

M1 at 3.7991. This suggests that all three LSTM models had comparable performance, with slight 

variations indicating consistent accuracy in prediction but a tendency to underperform slightly relative 

to the RF models. The RF models (RFM-M1, RFM-M2, and RFM-M3) exhibited slightly higher RMSE 

values, ranging from 3.8014 to 3.8015. While these values are marginally higher than the LSTM models, 

the difference is insignificant. This minimal increase in RMSE suggests that the RF models maintain 

high predictive accuracy during the verification phase, with robust generalization capabilities. The 

RMSE values reveal that both the LSTM and RF models performed well in predicting unseen data, with 

a slight edge in accuracy for LSTM models based purely on RMSE. However, given the RF models’ 

strong performance, their ensemble nature likely contributes to better stability and resistance to 

overfitting despite the minor difference in RMSE. This indicates that RF models may offer better 

reliability for practical applications in more complex or varied data scenarios. 
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Figure 7: Radar plots between the observed and computed values regarding goodness-of-fit criteria. 

5. Conclusion 

  This study investigated the predictive performance of LSTM and RF models for cooling capacity 

prediction. The models were evaluated using various performance metrics, including R, R², MSE, and 

RMSE, providing comprehensive insights into their effectiveness during calibration and verification 

phases. The results demonstrated that long short-term memory and RF models deliver high accuracy 

in modeling Energy Cooling systems, with strong correlations and low errors during training. However, 

during testing, the RF model consistently outperformed the LSTM model, particularly regarding its 

generalization ability to unseen data. This enhanced performance can be attributed to the ensemble 

nature of RF, which reduces the risk of overfitting and enhances robustness. While the sequential 

learning capability of the long short-term memory model makes it highly effective for capturing time-

dependent patterns, its performance during testing was slightly constrained, indicating the need for 

further fine-tuning of hyperparameters to enhance its predictive accuracy with new data. Future 

research should focus on optimizing the long short-term memory model or exploring hybrid approaches 

that combine the strengths of both long short-term memory and RF models. Such hybrid solutions may 

offer improved predictive accuracy and adaptability in dynamic environments, ensuring enhanced 

modeling performance in complex real-world scenarios. 
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