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Abstract

Accurate prediction of Biochemical Oxygen Demand (BOD) is essential for understanding pollution
dynamics and supporting effective water quality management in the Ganga River. This study develops a
comprehensive data-driven modeling framework that integrates multivariate regression models with neural
network ensemble techniques to forecast BOD concentrations using physiochemical and microbial water
quality indicators. Four regression models, including Fine-Tree Linear Regression (FLR), Interactive Linear
Regression (ILR), Robust Linear Regression (RLR), and Stepwise Linear Regression (SWLR), were
developed using combinations of dissolved oxygen (DO), pH, conductivity, total coliform (TC), and fecal
coliform (FC). Correlation analysis revealed moderate positive associations of BOD with pH (r = 0.26),
conductivity (r = 0.23), and dissolved oxygen (r = 0.06), on the other hand, the microbial indicators showed
weak negative correlations, indicating the need for advanced modeling frameworks beyond simple linear
relationships. Model evaluation based on MSE, RMSE, MAE, and SMAPE showed that FLR models
outperformed other regression models, with FLR-4 producing the lowest testing errors (MSE = 0.0043;
RMSE = 0.0657) among all linear regressors. However, integrating the regression outputs into neural
network ensembles significantly enhanced prediction accuracy. The Bilayered Neural Ensemble (BNE)
models consistently performed best, with BNE-RLR (testing MSE = 0.0015; RMSE = 0.0381) and BNE-ILR
(testing MSE = 0.0015; RMSE = 0.0392) providing the highest accuracy and stability across all performance
indices. The findings demonstrate that coupling multivariate regression with neural network ensemble
modeling provides a robust and highly accurate framework for BOD prediction in the Ganga River and other

similar river systems.

Keywords: Biochemical Oxygen Demand; Ganga River; Machine Learning; Neural Network Ensembles;
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1. Introduction

The Ganga River is one of the world’s most densely utilized freshwater systems and continues to face
critical pollution pressures due to rapid urban expansion, untreated municipal sewage, industrial
effluents, and intensified agricultural activities. These stressors have led to significant deterioration in
water quality, particularly in stretches around major urban centers such as Kanpur, Varanasi, and Patna
[1][2]. Among the various parameters used to assess aquatic health, BOD is widely recognized as a key
indicator of organic pollution, ecosystem stability, and microbial oxygen consumption within the river
environment [3]. Effective prediction of BOD is fundamental to pollution forecasting, regulatory
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planning, and sustainable river basin management across the Ganga basin. Despite its importance,
modelling BOD remains methodologically challenging due to the nonlinear, heterogeneous, and
dynamic interactions among physicochemical and microbial variables. Past studies indicate that
relationships involving DO, pH, electrical conductivity, TC, and FC often deviate from purely linear
patterns, especially under variable hydrological regimes [4] [5]. Traditional linear approaches have
captured broad trends but fail to represent higher-order interactions and uncertainty, particularly
during periods of high organic loading or monsoon-driven fluctuations [6]. Consequently, recent
research has shifted toward data-driven models, including neural networks, fuzzy systems, and
ensemble learning, which provide better representation of temporal variability and contaminant
dynamics [7] [8].

Existing machine-learning studies on river systems have primarily relied on standalone models such
as ANN, SVR, random forests, or fuzzy inference systems. While these methods exhibit improved
predictive capability, they often lack interpretability or robustness when applied across large, spatially
diverse datasets [9] [10]. Similarly, [11] study implements explainable machine learning for assessing
groundwater quality, [12] used computational-based approaches and [13] applied supervised ML with
ANN, but limited studies have explored hybrid frameworks that combine regression interpretability
with ensemble predictive strength. Moreover, no prior work has systematically evaluated the
integration of FLR, ILR, RLR, and SWLR within a unified neural network ensemble architecture for
BOD forecasting in the Ganga River. This unexplored methodological gap motivates the present study.
To address these limitations, this research develops a comprehensive hybrid modelling framework that
couples four multivariate regression structures (FLR, ILR, RLR, and SWLR) with advanced neural
network ensemble techniques. Regression models provide structured interpretability by quantifying
relationships among BOD and selected water quality indicators, while neural ensembles, particularly
BNE, enhance accuracy by reducing variance and stabilizing predictions across multiple resampled
models. This dual-architecture approach aims to exploit the strengths of both modelling categories,
thereby improving generalization performance and minimizing prediction errors that typically arise in
standalone models. The application significance of this study extends to operational water quality
management, real-time pollution surveillance, and early warning systems under the National Mission
for Clean Ganga (NMCG). A hybrid regression ensemble framework offers a scalable tool for forecasting
BOD with high precision, supporting decision-making for wastewater discharge control, treatment
infrastructure planning, and environmental regulation enforcement. Beyond the Ganga basin, the
proposed framework can be adapted for other polluted river systems facing complex contaminant
dynamics. The outcomes may contribute to the broader scientific agenda of integrating interpretable
statistical models with advanced machine-learning strategies to enhance predictive water quality
analytics.

2. Methodology

2.1 Dataset and Study Area

The Ganga River basin spans a broad geographic range, approximately 21°06’ to 31°21’ N latitude and
73°02’ to 89°05’ E longitude. This study focuses on the river that spans Uttarakhand, Uttar Pradesh,
Bihar, Jharkhand, and West Bengal, capturing its longitudinal variability through the influence of urban
effluents, agricultural runoff, industrial discharges, and natural purification processes. Water-quality
data were collected at key entry and exit points of each state, including notable locations such as
upstream Jail Ghat and downstream Cremation Ghat (Bihar), Raj Mahal (Bihar), LCT Ghat
(Jharkhand), Khagra—Beharampore and Diamond Harbour (West Bengal), Bijnor and Tarighat
Ghazipur (Uttar Pradesh), and Sultanpur (Uttarakhand), as well as NWMP and IRBM monitoring
stations. These sampling points provide comprehensive spatial coverage, enabling assessment of river
health along the entire stretch of the Ganga as presented in Figure 1. The dataset comprises GPS-
referenced physicochemical and microbial indicators: DO, pH, Electrical Conductivity, BOD, FC, and
TCo, benchmarked against national standards (DO > 5 mg/L, pH 6.5-8.5, BOD < 3 mg/L, fecal coliform
< 2500 MPN/100 mL). Sampling followed standardized protocols by CPCB-HQ Delhi, RD-Lucknow,
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and state agencies, yielding a multivariate dataset suitable for machine-learning modeling. Spatial
coverage captures ecological heterogeneity from cleaner upstream segments in Uttarakhand to
pollution-intense downstream stretches in Bihar and West Bengal. This gradient provides a robust basis
for predictive modeling, integrating physicochemical and microbiological indicators across state
boundaries for accurate BOD prediction.
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Figure 1: Map of the Ganga (Ganges) river
2.2 Theory of Models

2.2.1 Fine-Tree Linear Regression (FLR)

This is known as Piecewise-Linear Regression. FLR integrates decision-tree partitioning with linear
regression by fitting linear models within each tree leaf. This allows the model to capture both global
nonlinearity and local linear relationships, improving predictive performance in heterogeneous
datasets [14]. If the input space is partitioned into (m) disjoint regions (R1...... Rm), then

A

y" = Y. I(xeRk) (B0k + Bk ™) (1)

where I(.) is the indicator function for region membership, x is the predictor vector, and Bok; Pk are the
intercept and slopes for region Rk [15].

2.2.2 Interactive Linear Regression (ILR)

ILR extends standard multiple linear regression by including interaction terms between predictors. This
allows modeling the combined effect of two or more variables on the response, capturing non-additive
relationships [16]. The equation for two predictors is:

y=Po+ BiXy +ByX; +B1,(X1 XXz) + € (2)
where B1,2 quantifies the interaction effect between X; and X..
2.2.3 Robust Linear Regression (RLR)

RLR reduces the influence of outliers and assumption violations in classical OLS regression. The M-
estimator, introduced by Huber (1964), replaces the squared-error loss with a robust loss function to
down-weight large residuals [17].
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where p(.) is a robust loss function (e.g., Huber’s function).

2.2.4. Stepwise Linear Regression (SWLR)

SWLR is an automated variable-selection procedure that iteratively adds or removes predictors based
on statistical criteria (p-values, F-tests, or information criteria). It identifies a parsimonious subset of
variables that optimally explain the dependent variable [18].

y'= Bot TjesBo Xyt € ey
where S is the subset of selected predictors.
2.2.5 Ensemble learning technique (ELT)

Ensemble models consist of multiple base learners whose combined predictions produce results that
are typically more accurate and more stable than those of any single model. They integrate the outputs
of several classifiers or predictors to improve reliability and predictive performance in both supervised
and unsupervised learning tasks [19]. Previous studies also show that using two or more predictors
together can significantly strengthen the forecasting ability of time-series models [20]. The literature
consistently highlights that combining model outputs is an effective strategy for improving prediction
efficiency in time-series applications.

2.2.6 Non-linear neural ensemble (NNE)

The NNE model consists of multiple neural network predictors that are combined through nonlinear
integration to improve the performance of the learning system. This type of ensemble is widely applied
in machine learning and deep learning because it strengthens model robustness and enhances
predictive accuracy. In nonlinear neural ensembles, a separate neural network is trained to perform
nonlinear averaging, where the outputs of the selected base models serve as inputs to the ensemble
network. Each model output is assigned to a neuron in the input layer. For the FFNN-based ensemble
used in this study, the tangent sigmoid activation function is applied in both the hidden and output
layers, and training is carried out using the backpropagation algorithm. The optimal network structure
and appropriate number of epochs are determined through a trial-and-error procedure. The nonlinear
ensemble adopted here is a feedforward neural network (FFNN), as it is a widely used and well-
established approach in artificial intelligence [21].

2.3 Model Preprocessing and Evaluation Measures

Before model development, the water-quality dataset consisting of 83 observations was subjected to
preprocessing to ensure data integrity and suitability for regression analysis. All input variables were
normalized to a [0—1] range using min-max scaling to eliminate unit-based disparities and ensure
uniform influence of each predictor on model training [22]. The dataset was subsequently partitioned
into training and testing subsets (70:30) for model calibration and validation [23]. Four regression
models (M1-M4) were developed using different combinations of input parameters, as summarized in
Table 1. Model performance was assessed using multiple statistical evaluation metrics (equations 1-4),
including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
and Symmetric Mean Absolute Percentage Error (SMAPE) [24][25]. This provides a comprehensive
measure of prediction accuracy and reliability. The methodological flowchart was presented in Figure
2.
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Table 1: Model's Input Parameter Combination

|([BOD (o] + [BOD’ (4)1)/2|

Models Input Parameters Combination
M1 DO | pH
M2 DO | pH | Conductivity
M3 DO | pH | Conductivity | Total Coliform
M4 DO | pH | Conductivity | Total Coliform | Fecal Coliform
L&
MSE = NZ(BOD ) — BOD (o))z 5)
i=1
T ©)
RMSE = NZ(BOD @ — BOD (4))?
i=1
N .|BOD .,y — BOD
g - 2=1/BOD ) ©l -
N
100~ | |BOD' (4 — BOD ()|
SMAPE = Tz | © wl | (8)
i=1

where BODo is the observed value, BODp is the simulated value, and BODo’ is the mean observed value.
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Figure 2: Study methodology flowchart
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3. Results and Discussion

3.1 Feature Selection and Feature Engineering

Accurate prediction of water-quality parameters requires careful selection and engineering of input
features. The dataset comprised six primary indicators: BOD (mg/1), Dissolved Oxygen (mg/1),
Conductivity (umhos/cm), pH, Total Coliform (MPN/100 ml), and Fecal Coliform (MPN/100 ml). An
initial exploratory data analysis, including box plots, variance assessment, and correlation analysis, was
performed to identify variables with low variability, strong collinearity, or extreme outliers (see Figure
3). Domain knowledge further guided the selection of features most relevant to each model: for example,
M1 focused on BOD and pH due to their direct influence on organic pollution, while M4 incorporated
all six indicators to capture cumulative and synergistic effects on river water quality. Feature
engineering was applied to enhance model performance and interpretability. Continuous variables were
normalized to a 0—1 scale to ensure uniform contribution and mitigate bias from differing units.
Interaction terms (e.g., pH vs DO) were introduced for ILR models to capture compounded
environmental effects. Piecewise linear transformations in FLR models addressed local non-linear
relationships, while outlier-resistant scaling in RLR minimized the influence of extreme values such as
sudden spikes in coliform counts. These engineered features allowed the models to capture both linear
and non-linear dynamics inherent in river water-quality parameters. This combined approach of
strategic feature selection and engineering ensured that models were trained on predictors that are
informative, non-redundant, and properly scaled, improving predictive accuracy, robustness, and
generalizability. Beyond model performance, this methodology provides actionable insights for water
resource management, as the selected and transformed features directly reflect key environmental
drivers. By integrating statistical rigor with domain relevance, the study ensures that predictive models
are both scientifically sound and practically applicable across the Ganga River water-quality dataset.
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Figure 3: Parameter distribution pattern
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3.2 Statistical Evaluation Results

The correlation matrix elucidates the pairwise relationships among six key water-quality parameters;
DO, pH, Conductivity, TC, FC, and BOD (see Figure 4). This is introduced to highlight the strength and
direction of linear associations. Strong positive correlations, such as DO with FC (0.85) and DO with
BOD (0.61), indicate that regions with elevated organic load also exhibit increased oxygen demand and
microbial activity, suggesting that DO could serve as a proxy variable in simplified predictive models,
thereby reducing dimensionality without compromising accuracy. Conversely, pH exhibits weak
correlations (0.06—0.25) with most parameters, emphasizing its independent environmental influence
and the necessity of retaining it in models to capture subtle but relevant effects. Weak negative
associations, such as Conductivity with TC (-0.082), demonstrate minimal interdependence between
ionic content and microbial counts, informing strategies to avoid multicollinearity and enhance model
interpretability. These insights have direct applications in water-quality modeling: strongly correlated
variables can be selectively combined to improve computational efficiency and reduce overfitting in
models such as FLR and RLR, while variables with low correlations but ecological significance, like pH,
enhance model generalizability. Furthermore, interaction terms between moderately correlated
parameters (e.g., pH versus DO) can be incorporated into ILR frameworks to capture compounded
environmental effects. Collectively, the correlation analysis provides a robust, data-driven foundation
for both predictive modeling and targeted water-management interventions, ensuring that selected
features are informative, non-redundant, and aligned with practical environmental objectives.
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Figure 4: Correlation analysis matrix
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Table 2 summarizes the key descriptive statistics for six water-quality parameters used in predictive
modeling: DO, pH, Conductivity, TC, FC, and BOD. The mean values indicate the central tendency of
the normalized dataset, with Conductivity (0.9329) and FC (0.9040) showing relatively higher average
levels compared to other parameters, suggesting dominant ionic content and microbial activity in the
water samples. Standard deviations are moderate (0.145-0.217), reflecting variability across
observations, while standard errors are low (0.016—0.024), indicating that the sample means are
reliable estimates of the population parameters. The skewness and kurtosis values reveal the
distributional characteristics of the dataset. Most parameters display negative skewness (e.g., DO:
—0.267, BOD: —2.421), indicating a slight left-tail tendency, whereas pH shows near-zero skewness
(0.042), reflecting approximate symmetry. High kurtosis values for Conductivity (21.73), FC (18.50),
and TC (5.84) suggest heavy-tailed distributions and the presence of outliers, which should be
considered in modeling to avoid bias. The range, minimum, and maximum confirm that all variables
were normalized to a 0—1 scale, ensuring comparability and facilitating efficient convergence in
regression models. From an application perspective, these statistics inform both model selection and
feature engineering. Parameters with higher variance and extreme kurtosis may benefit from robust
regression approaches (e.g., RLR) or transformation to mitigate the influence of outliers. Similarly,
normalized data supports predictive models (e.g., FLR or ILR) by ensuring numerical stability and
avoiding scale dominance. The descriptive analysis establishes a quantitative foundation for subsequent
correlation assessment, feature selection, and predictive modeling. This verifies that each variable’s
statistical behavior is adequately captured and incorporated.

Table 2: Descriptive Statistics for Modeling Variables

- Total Fecal

Parameter DO pH Conductivity Coliform | Coliform BOD
Mean 0.6138 0.4916 | 0.9329 0.8342 0.9040 0.7937
Standard Error 0.0216 | 0.0206 | 0.0160 0.0239 0.0160 0.0196
Mode 0.6667 | 0.4188 | 0.9911 0.7675 0.8633 0.6875
Standard Deviation 0.1970 | 0.1874 | 0.1456 0.2175 0.1459 0.1786
Sample Variance 0.0388 | 0.0351 | 0.0212 0.0473 0.0213 0.0319
Kurtosis 0.9834 | 0.6279 | 21.7284 5.8427 18.4962 8.5913
Skewness -0.2674 | 0.0415 | -4.2151 -2.3894 -3.6892 2.4209
Range 1.0000 | 1.0188 | 1.0000 1.0000 1.0000 1.0000
Minimum 0.0000 | 0.0125 | 0.0000 0.0000 0.0000 0.0000
Maximum 1.0000 | 1.0063 | 1.0000 1.0000 1.0000 1.0000
Confidence Level (95%) 0.0430 | 0.0409 | 0.0318 0.0475 0.0318 0.0390

3.3 Model Performance Results

3.3.1 Single-Model Performance

Table 3 reports the predictive performance of the individual models FLR, ILR, RLR, and SWLR for both
the training and testing phases. To complement these numerical results, the empirical cumulative
distribution functions (CDFs) presented in Figures 5a and 5b provide additional insight into the
distribution and concentration of prediction errors across the respective model structures. Among the
FLR variants, FLR-4 consistently achieved the strongest predictive accuracy, reflected in a testing MSE
of 0.0043 and an RMSE of 0.0657. This quantitative advantage is mirrored clearly in the CDF plots: the
FLR curves, particularly those corresponding to FLR-4, show the steepest ascent and are positioned
closest to the origin. This pattern indicates that many errors fall within a narrow, low-magnitude band.
The close spacing between the upper and lower bounds of the CDF envelopes further suggests that FLR-
based predictions are not only accurate but also stable, with limited sensitivity to noise or perturbations
in the data. Such behavior underscores the strength of fuzzy regression when modelling systems are
characterized by overlapping influences and nonlinear interactions, such as water-quality dynamics.
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The ILR models yielded moderately higher testing errors, with ILR-4 recording MSE = 0.0090 and
RMSE = 0.0950. The corresponding CDF profiles confirm this trend: the ILR curves rise more gradually
than their FLR counterparts and display a broader dispersion, indicating a higher proportion of mid-
range residuals. Although ILR-4 performs better than ILR-1 through ILR-3, its CDF trace still reflects a
less compact error distribution, highlighting ILR’s limitations in capturing subtle nonlinearities. On the
other hand, RLR models demonstrated stable training behavior (MSE = 0.0188-0.0190) but their
performance deteriorated substantially on the testing set (MSE = 0.0840-0.1018). The CDF plots
illustrate this clearly; RLR curves lie noticeably to the right and exhibit the widest spread among all
model classes, revealing persistent large-error contributions and a strong indication of overfitting. The
divergence between training stability and testing performance implies that the robustness methods
embedded in the RLR framework did not translate into improved generalization under real-world
variability.

The SWLR models occupied an intermediate position. With a testing MSE of 0.0104 and RMSE of
0.1019, SWLR-4 showed modest accuracy gains over earlier SWLR variants, yet remained less precise
than FLR-4. The corresponding CDF curves align with this observation, clustering more tightly than
those of RLR but lacking the sharp, left-biased rise observed in the FLR family. This suggests that while
stepwise feature selection mitigates some redundancy and multicollinearity, it does not fully address
the nonlinear structure of the target variable. Taken together, both the statistical metrics and the CDF-
based visual diagnostics converge on the same conclusion: FLR, and particularly FLR-4, provides the
most accurate and reliably distributed predictions among all tested single-model approaches. The
superior concentration of residuals in the FLR CDF (Figure 5) plots illustrate the model’s capacity to
capture uncertainty and nonlinear relationships more effectively than conventional regression
frameworks. These findings reinforce the suitability of FLR as a primary modelling strategy for complex
water-quality prediction tasks.

Table 3: Model output results using ML approaches

Models TRAINING TESTING

MSE RMSE MAE SMAPE MSE RMSE MAE SMAPE
FLR-1 0.0087 | 0.0935 0.0017 0.1093 0.0061 0.0782 0.0009 0.1322
FLR-2 0.0082 | 0.0904 0.0006 0.1056 0.0046 0.0681 0.0009 0.1199
FLR-3 0.0080 | 0.0897 0.0005 0.1049 0.0044 0.0664 0.0011 0.1153
FLR-4 0.0078 | 0.0885 0.0003 0.1022 0.0043 0.0657 0.0011 0.1150
ILR-1 0.0187 0.1369 0.0005 0.1332 0.0175 0.1324 0.0004 0.1847
ILR-2 0.0174 0.1318 0.0008 0.1274 0.0139 0.1179 0.0005 0.1567
ILR-3 0.0169 | 0.1302 0.0012 0.1296 0.0116 0.1076 0.0002 0.1435
ILR-4 0.0151 0.1227 0.0021 0.1179 0.0090 0.0950 0.0003 0.1412
RLR-1 0.0190 | 0.1379 0.0008 0.0957 0.1018 0.3190 0.0002 0.2622
RLR-2 0.0188 | 0.1370 0.0009 0.0966 0.0931 0.3051 0.0001 0.2529
RLR-3 0.0189 | 0.1376 0.0012 0.0995 0.0865 0.2942 0.0001 0.2368
RLR-4 0.0188 | 0.1372 0.0012 0.1002 0.0840 0.2898 0.0002 0.2354
SWLR-1 0.0187 0.1369 0.0005 0.1332 0.0175 0.1324 0.0004 0.1847
SWLR-2 0.0176 | 0.1326 0.0008 0.1293 0.0145 0.1204 0.0003 0.1681
SWLR-3 0.0174 0.1320 0.0012 0.1325 0.0121 0.1102 5.32E-05 0.1568
SWLR-4 0.0166 | 0.1290 0.0013 0.1260 0.0104 0.1019 1.71E-05 0.1479




Usman U. Aliyu et al.

Techno-computing Journal (2025)

0.2

0.2

BOD (mg/L) FLR_M1 FLR_M2
(a) 1.0 1.0 1.0
0.8 0.8 0.8
2 2 2z
= 086 = 064 = 06
E-1 o E-1
H H
S 04 S 04 ° 04
o o o
02_ 02 02
u.°7| T T T T T T T T T T 0.0 T T T T T T T U'o T T T T T T T
00 01 02 03 04 05 06 07 08 08 1.0 3 4 5 & 7 8 9 3 4 5 & 7 8 9
FLR_M3 FLR_W4 ILR_M1
1.0+ 104 1.0+
038 08 ] 0.8
Z Z z
£ 06 £ 08 £ 06
E-1 o a
L] @ L]
2 04l S o4l 2 04,
o o o
02| 02| 02
U'o T T T T T T T 0'0 T T T T T T T 0.0+ T T T T T T T T
03 04 05 06 07 08 09 03 04 05 06 07 08 09 03 04 05 06 07 08 09 10
ILR_M2 ILR_MB ILR_M4
1.0 1.0 1.0
0.8 0.8 0.8
= bl >
£ o8 £ o086 £ o8
o o o
o 3 o
S 04 S 04l S 04
o o o
02 02 ] 02
0.0 0.0 ] 0.0
02 03 04 05 08 07 08 09 10 02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 08 10
BOD (mg/L) RLR_M RLR_M2
(b)m_ 1.0 4 1.0
08| 08 | 038
> > >
£ 06 £ 06/ £ 06
3 5 F
] [} [}
S 04 | 04] e 04
o x [
02| 02 02
U-D-\ T T T T T T T T T T 004 T T T T T T T T T 0.0 T T T T T T T T T T
00 01 02 03 04 05 0.6 07 08 09 10 070 075 080 0.85 0.90 095 1.00 1.05 1.10 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
RLR_M3 RLR_M4 SWLR_M
10 1.0 1.0
08 0.3 08
> > >
£ 06 £ 06/ £ 06
2 2 £
] [} [}
T 04 S 04 T 04
o o o
02| 02 02|
0.0 0.0 | 0.0
0,60 0.65 0.70 0.75 0.80 0.85 0.90 0.35 1.00 1.05 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 03 04 05 06 07 08 09 10
SWLR_M2 SWLR_M3 SWLR_M4
10 1.0 5 1.0
08| 08 | 08
> 3 >
£ 06 £ 06/ £ 06
H 3 H
[:] [} 3
| 04 S 04 S 04
o T [
02
0.0 |

0.0 |

0.0 |

02 03 04 05 06 07 08 09 10

02 03 04 05 06 07 08 09

02 03 04 05 06 07 08 09 10

Figure 5: Single models CDF distribution plot (a and b)

10



Usman U. Aliyu et al. Techno-computing Journal (2025)

3.3.2 Neural Network and BNE Performance

Table 4 presents the performance outcomes for the NNE and BNE frameworks built upon the four
regression foundations (FLR, ILR, RLR, SWLR). Across all model families, the ensemble strategies
produced a substantial enhancement in predictive accuracy relative to the corresponding single-model
structures. The distributional behavior depicted in the ensemble prediction plots (Figure 6) provides a
complementary perspective, illustrating how the ensembles reshape the error structure and stabilize
the prediction outputs. For the FLR-based models, BNE-FLR achieved the strongest performance, with
a testing MSE of 0.0031 and an RMSE of 0.0555. This represents a clear improvement over both NNE-
FLR (MSE = 0.0033, RMSE = 0.0576) and the best-performing single FLR variant (FLR-4; RMSE =
0.0657). The BNE-FLR prediction plots show a notably uniform distribution, with fewer abrupt drops
and tighter clustering around the upper probability band. This visual compactness indicates reduced
variability and improved resilience to outlier behavior, confirming the numerical gains reported in
Table 4. The ensemble gains were even more pronounced for the ILR models. BNE-ILR achieved an
RMSE of 0.0392, representing nearly a sixfold improvement over the single ILR models, while NNE-
ILR also produced substantial reductions in error. The associated prediction distributions reveal a
striking contrast with the single ILR curves: the ensemble outputs exhibit dense, high-level plateaus
with markedly fewer low-probability excursions. This indicates that the neural ensemble mechanisms
successfully compensate for the linear interaction model’s inherent sensitivity to noise and local
gradient irregularities. A particularly notable outcome emerged from the RLR-based ensembles. While
single RLR models struggled with overfitting and produced relatively high testing errors, BNE-RLR
recorded a testing RMSE of 0.0381, representing one of the greatest improvements across all model
families. Correspondingly, the BNE-RLR prediction plot displays a flattening of the irregular dips
observed in the single RLR outputs, with the boosted ensemble effectively suppressing error spikes and
stabilizing the prediction profile. This confirms that boosting can counteract the brittleness and
variance amplification typically associated with robust regression in small or noisy datasets.

SWLR ensembles also benefited from the neural aggregation strategies. BNE-SWLR achieved an
RMSE of 0.0398, a large improvement over the best single SWLR variant (RMSE = 0.1019). In the
ensemble plots, the SWLR-based distributions show a clear upward shift with fewer pronounced
downward deviations, revealing that the ensemble successfully mitigates the instability introduced by
stepwise variable selection. The resulting curves resemble those of the FLR-based ensembles in terms
of smoothness and compactness, despite SWLR’s more rigid modelling structure. Taken together, the
numerical results and plot-based diagnostics converge on the same conclusion: neural ensembles,
especially boosted ensembles, significantly enhance predictive reliability across all regression families.
The ensembles reduce both systematic errors (lower bias) and random fluctuations (lower variance),
while producing prediction distributions that are smoother, more concentrated, and far less prone to
extreme deviations. These attributes confirm the ensembles’ superior ability to generalize across
varying water-quality conditions and highlight the value of integrating neural aggregation mechanisms
with traditional regression frameworks.

Table 4: Neural Network Ensemble Performance Metrics

Models Training Testing
MSE RMSE | MAE SMAPE | MSE RMSE | MAE SMAPE
NNE-FLR 0.0062 | 0.0786 | 0.0002 0.0859 0.0033 | 0.0576 | 5E-05 0.1078

BNE-FLR 0.0061 | 0.0780 | 7.97E-05 | 0.0826 0.0031 | 0.0555 | 1.27E-05 | 0.1009
NNE-ILR 0.0059 | 0.0768 | 0.0016 0.1048 0.0030 | 0.0544 | 0.0002 0.0543

BNE-ILR 0.0034 | 0.0587 | 0.0018 0.0817 0.0015 | 0.0392 | 0.0007 0.0292
NNE-RLR 0.0059 | 0.0767 | 0.0002 0.0804 0.0039 | 0.0622 | 0.0014 0.0588
BNE-RLR 0.0013 | 0.0366 | 0.0012 -0.0033 | 0.0015 | 0.0381 | 0.0003 0.0376

NNE-SWLR | 0.0046 | 0.0676 | 0.0020 0.0960 0.0020 | 0.0449 | 0.0008 0.0424
BNE-SWLR | 0.0039 | 0.0625 | 0.0003 0.0135 0.0016 | 0.0398 | 0.0002 0.0316
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Figure 6: Ensemble results distributional behavior

3.4 Real World Applications of Predictive Models for BOD in the Ganga River

The radar plots (Figure 7) presented earlier compare the predictive performance (RMSE, MAE, SMAPE)
across various model types, including regression-based models (e.g., FLR, ILR, RLR, SWLR) and more
complex neural-network—based ensemble models. In many practical applications, simpler regression
models (e.g., FLR) tend to achieve moderate accuracy; their lower RMSE and MAE relative to some
more naive regression variants, suggest that they can capture some of the nonlinear patterns typical in
river water quality dynamics. Nevertheless, such models are limited by inherent model biases, restricted
functional form, and potential overfitting or underfitting, especially when river chemistry responds to
complex, interacting environmental drivers. By contrast, empirical evidence from recent water quality
modelling studies confirms that neural network and ensemble approaches, especially hybrid or stacked
models, often deliver substantially improved predictive accuracy. For example, in a survey on the Karun
River, a hybrid model combining wavelet-transformed features with a Random Forest (RF) base
achieved low error values for BOD prediction, outperforming both pure tree-based and regression tree
models. [26] Similarly, an investigation on the Jinjiang River basin proposed a hybrid model based on
a Long Short-Term Memory (LSTM) neural network with discrete wavelet transform (DWT)
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preprocessing (ANN WT LSTM), which delivered superior performance compared with conventional
models. A more recent demonstration for the Godavari River Basin used a stacking ANN meta model
built on multiple machine learning base learners (e.g., RF, boosting methods) and showed that such
ensemble models significantly increased the coefficient of determination for BOD predictions, as proved
by [27]. These findings support the inference from the radar plots that bilayer neural network ensembles
can robustly capture complex, nonlinear, and interacting influences on water quality than simpler
models [28].

From a management perspective, high-accuracy predictive models offer tangible benefits for real-
world water quality control. First, early warning systems may be built to provide timely and reliable
forecasts of BOD spikes or organic load surges that can trigger alerts before oxygen depletion events
threaten aquatic life or public health. Second, treatment optimization becomes feasible when
wastewater treatment plants or remediation systems can adjust aeration, chemical dosing, or discharge
control based on predicted BOD fluctuations rather than relying solely on measured BOD (which
requires a lagging incubation period). Third, pollution source identification and hotspot detection can
be supported by coupling spatially distributed water quality data (e.g., from multiple monitoring
stations) with model predictions, so that stakeholders can map where organic loading is most severe,
thereby aiding targeted regulatory action or cleanup. Fourth, predictive models offer decision support
for river restoration: what-if scenarios (e.g., changes in land use, discharge regulations, runoff controls)
can be simulated to evaluate their potential impact on BOD and overall water quality. Finally, when
integrated with real-time or near real-time monitoring networks (sensors for DO, TSS, flow,
temperature, etc.), these models can power dynamic, adaptive management: as new data come in,
forecasts update, enabling real-time response to pollution events. The empirical literature supports the
conclusion that a hybrid framework combining multivariate regression (for interpretability) with neural
network or ensemble models (for predictive power) yields a robust, scalable, and practical tool for real-
time water quality prediction and management. This strongly suggests that applying BNE style models
to a complex, large river system such as the Ganga River is not only methodologically defensible but
potentially transformative for ecological integrity and public health protection in practice.
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Figure 7: Spider and radar plots for both single and ensemble models

13



Usman U. Aliyu et al. Techno-computing Journal (2025)

4. Conclusion

This study demonstrates the efficacy of a hybrid data-driven framework combining multivariate
regression models with neural network ensemble techniques for predicting Biochemical Oxygen
Demand in the Ganga River. Among the regression models, Fine-Tree Linear Regression exhibited
superior performance relative to Interactive Linear Regression, Robust Linear Regression, and Stepwise
Linear Regression, with FLR-4 achieving the lowest testing errors. Nonetheless, the integration of
regression outputs into Bilayer Neural Ensemble models substantially enhanced predictive accuracy
and stability, with BNE-RLR and BNE-ILR producing the most reliable forecasts across all evaluation
metrics (MSE, RMSE, MAE, and SMAPE). Correlation analysis highlighted that physiochemical
parameters such as pH, conductivity, and dissolved oxygen contributed moderately to BOD variation,
while microbial indicators showed weak associations, emphasizing the limitations of linear approaches
in capturing complex, nonlinear interactions inherent in river water-quality dynamics. The neural
network ensemble framework effectively addressed these limitations, leveraging complementary
strengths of individual regression models to reduce systematic and random errors. Conclusively, the
findings indicate that coupling multivariate regression with neural network ensemble modeling offers
a robust, scalable, and practical tool for real-time and accurate BOD prediction. This approach not only
improves forecasting reliability but also provides actionable insights for water-quality management,
early warning systems, pollution source identification, and informed decision-making for ecological
restoration in major river systems such as the Ganga. The study underscores the potential of hybrid
predictive frameworks to enhance environmental monitoring and support sustainable riverine
management practices.
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