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1. Introduction  

The Ganga River is one of the world’s most densely utilized freshwater systems and continues to face 

critical pollution pressures due to rapid urban expansion, untreated municipal sewage, industrial 

effluents, and intensified agricultural activities. These stressors have led to significant deterioration in 

water quality, particularly in stretches around major urban centers such as Kanpur, Varanasi, and Patna 

[1][2]. Among the various parameters used to assess aquatic health, BOD is widely recognized as a key 

indicator of organic pollution, ecosystem stability, and microbial oxygen consumption within the river 

environment [3]. Effective prediction of BOD is fundamental to pollution forecasting, regulatory 
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Abstract 

Accurate prediction of Biochemical Oxygen Demand (BOD) is essential for understanding pollution 

dynamics and supporting effective water quality management in the Ganga River. This study develops a 

comprehensive data-driven modeling framework that integrates multivariate regression models with neural 

network ensemble techniques to forecast BOD concentrations using physiochemical and microbial water 

quality indicators. Four regression models, including Fine-Tree Linear Regression (FLR), Interactive Linear 

Regression (ILR), Robust Linear Regression (RLR), and Stepwise Linear Regression (SWLR), were 

developed using combinations of dissolved oxygen (DO), pH, conductivity, total coliform (TC), and fecal 

coliform (FC). Correlation analysis revealed moderate positive associations of BOD with pH (r = 0.26), 

conductivity (r = 0.23), and dissolved oxygen (r = 0.06), on the other hand, the microbial indicators showed 

weak negative correlations, indicating the need for advanced modeling frameworks beyond simple linear 

relationships. Model evaluation based on MSE, RMSE, MAE, and SMAPE showed that FLR models 

outperformed other regression models, with FLR-4 producing the lowest testing errors (MSE = 0.0043; 

RMSE = 0.0657) among all linear regressors. However, integrating the regression outputs into neural 

network ensembles significantly enhanced prediction accuracy. The Bilayered Neural Ensemble (BNE) 

models consistently performed best, with BNE-RLR (testing MSE = 0.0015; RMSE = 0.0381) and BNE-ILR 

(testing MSE = 0.0015; RMSE = 0.0392) providing the highest accuracy and stability across all performance 

indices. The findings demonstrate that coupling multivariate regression with neural network ensemble 

modeling provides a robust and highly accurate framework for BOD prediction in the Ganga River and other 

similar river systems. 
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planning, and sustainable river basin management across the Ganga basin. Despite its importance, 

modelling BOD remains methodologically challenging due to the nonlinear, heterogeneous, and 

dynamic interactions among physicochemical and microbial variables. Past studies indicate that 

relationships involving DO, pH, electrical conductivity, TC, and FC often deviate from purely linear 

patterns, especially under variable hydrological regimes [4] [5]. Traditional linear approaches have 

captured broad trends but fail to represent higher-order interactions and uncertainty, particularly 

during periods of high organic loading or monsoon-driven fluctuations [6]. Consequently, recent 

research has shifted toward data-driven models, including neural networks, fuzzy systems, and 

ensemble learning, which provide better representation of temporal variability and contaminant 

dynamics [7] [8]. 

   Existing machine-learning studies on river systems have primarily relied on standalone models such 

as ANN, SVR, random forests, or fuzzy inference systems. While these methods exhibit improved 

predictive capability, they often lack interpretability or robustness when applied across large, spatially 

diverse datasets [9] [10]. Similarly, [11] study implements explainable machine learning for assessing 

groundwater quality, [12] used computational-based approaches and [13] applied supervised ML with 

ANN, but limited studies have explored hybrid frameworks that combine regression interpretability 

with ensemble predictive strength. Moreover, no prior work has systematically evaluated the 

integration of FLR, ILR, RLR, and SWLR within a unified neural network ensemble architecture for 

BOD forecasting in the Ganga River. This unexplored methodological gap motivates the present study. 

To address these limitations, this research develops a comprehensive hybrid modelling framework that 

couples four multivariate regression structures (FLR, ILR, RLR, and SWLR) with advanced neural 

network ensemble techniques. Regression models provide structured interpretability by quantifying 

relationships among BOD and selected water quality indicators, while neural ensembles, particularly 

BNE, enhance accuracy by reducing variance and stabilizing predictions across multiple resampled 

models. This dual-architecture approach aims to exploit the strengths of both modelling categories, 

thereby improving generalization performance and minimizing prediction errors that typically arise in 

standalone models. The application significance of this study extends to operational water quality 

management, real-time pollution surveillance, and early warning systems under the National Mission 

for Clean Ganga (NMCG). A hybrid regression ensemble framework offers a scalable tool for forecasting 

BOD with high precision, supporting decision-making for wastewater discharge control, treatment 

infrastructure planning, and environmental regulation enforcement. Beyond the Ganga basin, the 

proposed framework can be adapted for other polluted river systems facing complex contaminant 

dynamics. The outcomes may contribute to the broader scientific agenda of integrating interpretable 

statistical models with advanced machine-learning strategies to enhance predictive water quality 

analytics. 

 

2. Methodology  

2.1 Dataset and Study Area 

The Ganga River basin spans a broad geographic range, approximately 21°06′ to 31°21′ N latitude and 

73°02′ to 89°05′ E longitude. This study focuses on the river that spans Uttarakhand, Uttar Pradesh, 

Bihar, Jharkhand, and West Bengal, capturing its longitudinal variability through the influence of urban 

effluents, agricultural runoff, industrial discharges, and natural purification processes. Water-quality 

data were collected at key entry and exit points of each state, including notable locations such as 

upstream Jail Ghat and downstream Cremation Ghat (Bihar), Raj Mahal (Bihar), LCT Ghat 

(Jharkhand), Khagra–Beharampore and Diamond Harbour (West Bengal), Bijnor and Tarighat 

Ghazipur (Uttar Pradesh), and Sultanpur (Uttarakhand), as well as NWMP and IRBM monitoring 

stations. These sampling points provide comprehensive spatial coverage, enabling assessment of river 

health along the entire stretch of the Ganga as presented in Figure 1. The dataset comprises GPS-

referenced physicochemical and microbial indicators: DO, pH, Electrical Conductivity, BOD, FC, and 

TCo, benchmarked against national standards (DO > 5 mg/L, pH 6.5–8.5, BOD < 3 mg/L, fecal coliform 

< 2500 MPN/100 mL). Sampling followed standardized protocols by CPCB-HQ Delhi, RD-Lucknow, 
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and state agencies, yielding a multivariate dataset suitable for machine-learning modeling. Spatial 

coverage captures ecological heterogeneity from cleaner upstream segments in Uttarakhand to 

pollution-intense downstream stretches in Bihar and West Bengal. This gradient provides a robust basis 

for predictive modeling, integrating physicochemical and microbiological indicators across state 

boundaries for accurate BOD prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Map of the Ganga (Ganges) river 

2.2 Theory of Models 

2.2.1 Fine-Tree Linear Regression (FLR) 

This is known as Piecewise-Linear Regression. FLR integrates decision-tree partitioning with linear 

regression by fitting linear models within each tree leaf. This allows the model to capture both global 

nonlinearity and local linear relationships, improving predictive performance in heterogeneous 

datasets [14]. If the input space is partitioned into (m) disjoint regions (R1…… Rm), then 

𝑦  ^ = ∑ I(x ϵ Rk) (𝛽0𝑘 +  𝛽𝑘 𝑇)
𝑚

𝑘=1
                                               (1) 

where I(.) is the indicator function for region membership, x is the predictor vector, and β0k; βk are the 

intercept and slopes for region Rk [15]. 

2.2.2 Interactive Linear Regression (ILR) 

ILR extends standard multiple linear regression by including interaction terms between predictors. This 

allows modeling the combined effect of two or more variables on the response, capturing non-additive 

relationships [16]. The equation for two predictors is: 

𝑦 = 𝛽0 + 𝐵1𝑋1  + 𝐵2𝑋2  + 𝐵1,2(𝑋1 × 𝑋2) +  𝜀                                 (2) 

where B1,2 quantifies the interaction effect between X1 and X2. 

2.2.3 Robust Linear Regression (RLR) 

RLR reduces the influence of outliers and assumption violations in classical OLS regression. The M-

estimator, introduced by Huber (1964), replaces the squared-error loss with a robust loss function to 

down-weight large residuals [17]. 
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min
𝛽0→𝛽

∑ 𝜌( yi − 𝛽0 −  𝛽𝑥𝑖  𝑇  𝑛

𝑖=1
𝛽                                                    (3) 

where ρ(.) is a robust loss function (e.g., Huber’s function). 

2.2.4. Stepwise Linear Regression (SWLR)  

SWLR is an automated variable-selection procedure that iteratively adds or removes predictors based 

on statistical criteria (p-values, F-tests, or information criteria). It identifies a parsimonious subset of 

variables that optimally explain the dependent variable [18]. 

𝑦  ^ =  𝛽0 +  ∑ 𝛽0
 ^

𝑗𝜖𝑆  𝑋𝑗 +  ϵ                                                                (4) 

where S is the subset of selected predictors. 

2.2.5 Ensemble learning technique (ELT) 

Ensemble models consist of multiple base learners whose combined predictions produce results that 

are typically more accurate and more stable than those of any single model. They integrate the outputs 

of several classifiers or predictors to improve reliability and predictive performance in both supervised 

and unsupervised learning tasks [19]. Previous studies also show that using two or more predictors 

together can significantly strengthen the forecasting ability of time-series models [20]. The literature 

consistently highlights that combining model outputs is an effective strategy for improving prediction 

efficiency in time-series applications. 

2.2.6 Non-linear neural ensemble (NNE)  

The NNE model consists of multiple neural network predictors that are combined through nonlinear 

integration to improve the performance of the learning system. This type of ensemble is widely applied 

in machine learning and deep learning because it strengthens model robustness and enhances 

predictive accuracy. In nonlinear neural ensembles, a separate neural network is trained to perform 

nonlinear averaging, where the outputs of the selected base models serve as inputs to the ensemble 

network. Each model output is assigned to a neuron in the input layer. For the FFNN-based ensemble 

used in this study, the tangent sigmoid activation function is applied in both the hidden and output 

layers, and training is carried out using the backpropagation algorithm. The optimal network structure 

and appropriate number of epochs are determined through a trial-and-error procedure. The nonlinear 

ensemble adopted here is a feedforward neural network (FFNN), as it is a widely used and well-

established approach in artificial intelligence [21]. 

2.3 Model Preprocessing and Evaluation Measures 

Before model development, the water-quality dataset consisting of 83 observations was subjected to 

preprocessing to ensure data integrity and suitability for regression analysis. All input variables were 

normalized to a [0–1] range using min-max scaling to eliminate unit-based disparities and ensure 

uniform influence of each predictor on model training [22]. The dataset was subsequently partitioned 

into training and testing subsets (70:30) for model calibration and validation [23]. Four regression 

models (M1–M4) were developed using different combinations of input parameters, as summarized in 

Table 1. Model performance was assessed using multiple statistical evaluation metrics (equations 1-4), 

including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

and Symmetric Mean Absolute Percentage Error (SMAPE) [24][25]. This provides a comprehensive 

measure of prediction accuracy and reliability. The methodological flowchart was presented in Figure 

2. 
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Table 1: Model's Input Parameter Combination 

Models Input Parameters Combination 

M1 DO pH 
   

M2 DO pH Conductivity 
  

M3 DO pH Conductivity Total Coliform 
 

M4 DO pH Conductivity Total Coliform Fecal Coliform 

 

M𝑆𝐸 =
1

𝑁
∑(BOD (𝑝) − BOD (𝑜))2

𝑁

𝑖=1

                                                                                        (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(BOD  (𝑝) −  BOD (𝑜))2

𝑁

𝑖=1

 

(6) 
 
 
 
 

𝑀𝐴𝐸 =
∑ |BOD (𝑝) − BOD (𝑜)|𝑁

𝑖=1

𝑁
                                                                                        (7) 

S𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

|𝐵𝑂𝐷′
 (𝑜) − BOD (𝑝)|

(|BOD (𝑜)| + |𝐵𝑂𝐷′
 (𝑜)|)/2

|                                                           (8)

𝑁

𝑖=1

 

 

where BODo is the observed value, BODp is the simulated value, and BODo′ is the mean observed value. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Study methodology flowchart 
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3. Results and Discussion 

3.1 Feature Selection and Feature Engineering  

Accurate prediction of water-quality parameters requires careful selection and engineering of input 

features. The dataset comprised six primary indicators: BOD (mg/l), Dissolved Oxygen (mg/l), 

Conductivity (µmhos/cm), pH, Total Coliform (MPN/100 ml), and Fecal Coliform (MPN/100 ml). An 

initial exploratory data analysis, including box plots, variance assessment, and correlation analysis, was 

performed to identify variables with low variability, strong collinearity, or extreme outliers (see Figure 

3). Domain knowledge further guided the selection of features most relevant to each model: for example, 

M1 focused on BOD and pH due to their direct influence on organic pollution, while M4 incorporated 

all six indicators to capture cumulative and synergistic effects on river water quality. Feature 

engineering was applied to enhance model performance and interpretability. Continuous variables were 

normalized to a 0–1 scale to ensure uniform contribution and mitigate bias from differing units. 

Interaction terms (e.g., pH vs DO) were introduced for ILR models to capture compounded 

environmental effects. Piecewise linear transformations in FLR models addressed local non-linear 

relationships, while outlier-resistant scaling in RLR minimized the influence of extreme values such as 

sudden spikes in coliform counts. These engineered features allowed the models to capture both linear 

and non-linear dynamics inherent in river water-quality parameters. This combined approach of 

strategic feature selection and engineering ensured that models were trained on predictors that are 

informative, non-redundant, and properly scaled, improving predictive accuracy, robustness, and 

generalizability. Beyond model performance, this methodology provides actionable insights for water 

resource management, as the selected and transformed features directly reflect key environmental 

drivers. By integrating statistical rigor with domain relevance, the study ensures that predictive models 

are both scientifically sound and practically applicable across the Ganga River water-quality dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Parameter distribution pattern 
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3.2 Statistical Evaluation Results  

The correlation matrix elucidates the pairwise relationships among six key water-quality parameters; 

DO, pH, Conductivity, TC, FC, and BOD (see Figure 4). This is introduced to highlight the strength and 

direction of linear associations. Strong positive correlations, such as DO with FC (0.85) and DO with 

BOD (0.61), indicate that regions with elevated organic load also exhibit increased oxygen demand and 

microbial activity, suggesting that DO could serve as a proxy variable in simplified predictive models, 

thereby reducing dimensionality without compromising accuracy. Conversely, pH exhibits weak 

correlations (0.06–0.25) with most parameters, emphasizing its independent environmental influence 

and the necessity of retaining it in models to capture subtle but relevant effects. Weak negative 

associations, such as Conductivity with TC (−0.082), demonstrate minimal interdependence between 

ionic content and microbial counts, informing strategies to avoid multicollinearity and enhance model 

interpretability. These insights have direct applications in water-quality modeling: strongly correlated 

variables can be selectively combined to improve computational efficiency and reduce overfitting in 

models such as FLR and RLR, while variables with low correlations but ecological significance, like pH, 

enhance model generalizability. Furthermore, interaction terms between moderately correlated 

parameters (e.g., pH versus DO) can be incorporated into ILR frameworks to capture compounded 

environmental effects. Collectively, the correlation analysis provides a robust, data-driven foundation 

for both predictive modeling and targeted water-management interventions, ensuring that selected 

features are informative, non-redundant, and aligned with practical environmental objectives. 

 

 

Figure 4: Correlation analysis matrix 
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Table 2 summarizes the key descriptive statistics for six water-quality parameters used in predictive 

modeling: DO, pH, Conductivity, TC, FC, and BOD. The mean values indicate the central tendency of 

the normalized dataset, with Conductivity (0.9329) and FC (0.9040) showing relatively higher average 

levels compared to other parameters, suggesting dominant ionic content and microbial activity in the 

water samples. Standard deviations are moderate (0.145–0.217), reflecting variability across 

observations, while standard errors are low (0.016–0.024), indicating that the sample means are 

reliable estimates of the population parameters. The skewness and kurtosis values reveal the 

distributional characteristics of the dataset. Most parameters display negative skewness (e.g., DO: 

−0.267, BOD: −2.421), indicating a slight left-tail tendency, whereas pH shows near-zero skewness 

(0.042), reflecting approximate symmetry. High kurtosis values for Conductivity (21.73), FC (18.50), 

and TC (5.84) suggest heavy-tailed distributions and the presence of outliers, which should be 

considered in modeling to avoid bias. The range, minimum, and maximum confirm that all variables 

were normalized to a 0–1 scale, ensuring comparability and facilitating efficient convergence in 

regression models. From an application perspective, these statistics inform both model selection and 

feature engineering. Parameters with higher variance and extreme kurtosis may benefit from robust 

regression approaches (e.g., RLR) or transformation to mitigate the influence of outliers. Similarly, 

normalized data supports predictive models (e.g., FLR or ILR) by ensuring numerical stability and 

avoiding scale dominance. The descriptive analysis establishes a quantitative foundation for subsequent 

correlation assessment, feature selection, and predictive modeling. This verifies that each variable’s 

statistical behavior is adequately captured and incorporated. 

Table 2: Descriptive Statistics for Modeling Variables 

Parameter DO pH Conductivity  
Total 
Coliform  

Fecal 
Coliform  

BOD  

Mean 0.6138 0.4916 0.9329 0.8342 0.9040 0.7937 
Standard Error 0.0216 0.0206 0.0160 0.0239 0.0160 0.0196 
Mode 0.6667 0.4188 0.9911 0.7675 0.8633 0.6875 
Standard Deviation 0.1970 0.1874 0.1456 0.2175 0.1459 0.1786 

Sample Variance 0.0388 0.0351 0.0212 0.0473 0.0213 0.0319 

Kurtosis 0.9834 0.6279 21.7284 5.8427 18.4962 8.5913 
Skewness -0.2674 0.0415 -4.2151 -2.3894 -3.6892 2.4209 
Range 1.0000 1.0188 1.0000 1.0000 1.0000 1.0000 
Minimum 0.0000 0.0125 0.0000 0.0000 0.0000 0.0000 
Maximum 1.0000 1.0063 1.0000 1.0000 1.0000 1.0000 
Confidence Level (95%) 0.0430 0.0409 0.0318 0.0475 0.0318 0.0390 

 

3.3 Model Performance Results 

3.3.1 Single-Model Performance   

Table 3 reports the predictive performance of the individual models FLR, ILR, RLR, and SWLR for both 

the training and testing phases. To complement these numerical results, the empirical cumulative 

distribution functions (CDFs) presented in Figures 5a and 5b provide additional insight into the 

distribution and concentration of prediction errors across the respective model structures. Among the 

FLR variants, FLR-4 consistently achieved the strongest predictive accuracy, reflected in a testing MSE 

of 0.0043 and an RMSE of 0.0657. This quantitative advantage is mirrored clearly in the CDF plots: the 

FLR curves, particularly those corresponding to FLR-4, show the steepest ascent and are positioned 

closest to the origin. This pattern indicates that many errors fall within a narrow, low-magnitude band. 

The close spacing between the upper and lower bounds of the CDF envelopes further suggests that FLR-

based predictions are not only accurate but also stable, with limited sensitivity to noise or perturbations 

in the data. Such behavior underscores the strength of fuzzy regression when modelling systems are 

characterized by overlapping influences and nonlinear interactions, such as water-quality dynamics. 
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   The ILR models yielded moderately higher testing errors, with ILR-4 recording MSE = 0.0090 and 

RMSE = 0.0950. The corresponding CDF profiles confirm this trend: the ILR curves rise more gradually 

than their FLR counterparts and display a broader dispersion, indicating a higher proportion of mid-

range residuals. Although ILR-4 performs better than ILR-1 through ILR-3, its CDF trace still reflects a 

less compact error distribution, highlighting ILR’s limitations in capturing subtle nonlinearities. On the 

other hand, RLR models demonstrated stable training behavior (MSE ≈ 0.0188–0.0190) but their 

performance deteriorated substantially on the testing set (MSE ≈ 0.0840–0.1018). The CDF plots 

illustrate this clearly; RLR curves lie noticeably to the right and exhibit the widest spread among all 

model classes, revealing persistent large-error contributions and a strong indication of overfitting. The 

divergence between training stability and testing performance implies that the robustness methods 

embedded in the RLR framework did not translate into improved generalization under real-world 

variability. 

   The SWLR models occupied an intermediate position. With a testing MSE of 0.0104 and RMSE of 

0.1019, SWLR-4 showed modest accuracy gains over earlier SWLR variants, yet remained less precise 

than FLR-4. The corresponding CDF curves align with this observation, clustering more tightly than 

those of RLR but lacking the sharp, left-biased rise observed in the FLR family. This suggests that while 

stepwise feature selection mitigates some redundancy and multicollinearity, it does not fully address 

the nonlinear structure of the target variable. Taken together, both the statistical metrics and the CDF-

based visual diagnostics converge on the same conclusion: FLR, and particularly FLR-4, provides the 

most accurate and reliably distributed predictions among all tested single-model approaches. The 

superior concentration of residuals in the FLR CDF (Figure 5) plots illustrate the model’s capacity to 

capture uncertainty and nonlinear relationships more effectively than conventional regression 

frameworks. These findings reinforce the suitability of FLR as a primary modelling strategy for complex 

water-quality prediction tasks. 

Table 3: Model output results using ML approaches 

Models TRAINING TESTING 
 

MSE RMSE MAE SMAPE MSE RMSE MAE SMAPE 

FLR-1 0.0087 0.0935 0.0017 0.1093 0.0061 0.0782 0.0009 0.1322 

FLR-2 0.0082 0.0904 0.0006 0.1056 0.0046 0.0681 0.0009 0.1199 

FLR-3 0.0080 0.0897 0.0005 0.1049 0.0044 0.0664 0.0011 0.1153 

FLR-4 0.0078 0.0885 0.0003 0.1022 0.0043 0.0657 0.0011 0.1150 

ILR-1 0.0187 0.1369 0.0005 0.1332 0.0175 0.1324 0.0004 0.1847 

ILR-2 0.0174 0.1318 0.0008 0.1274 0.0139 0.1179 0.0005 0.1567 

ILR-3 0.0169 0.1302 0.0012 0.1296 0.0116 0.1076 0.0002 0.1435 

ILR-4 0.0151 0.1227 0.0021 0.1179 0.0090 0.0950 0.0003 0.1412 

RLR-1 0.0190 0.1379 0.0008 0.0957 0.1018 0.3190 0.0002 0.2622 

RLR-2 0.0188 0.1370 0.0009 0.0966 0.0931 0.3051 0.0001 0.2529 

RLR-3 0.0189 0.1376 0.0012 0.0995 0.0865 0.2942 0.0001 0.2368 

RLR-4 0.0188 0.1372 0.0012 0.1002 0.0840 0.2898 0.0002 0.2354 

SWLR-1 0.0187 0.1369 0.0005 0.1332 0.0175 0.1324 0.0004 0.1847 

SWLR-2 0.0176 0.1326 0.0008 0.1293 0.0145 0.1204 0.0003 0.1681 

SWLR-3 0.0174 0.1320 0.0012 0.1325 0.0121 0.1102 5.32E-05 0.1568 

SWLR-4 0.0166 0.1290 0.0013 0.1260 0.0104 0.1019 1.71E-05 0.1479 
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Figure 5: Single models CDF distribution plot (a and b) 
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3.3.2 Neural Network and BNE Performance  

Table 4 presents the performance outcomes for the NNE and BNE frameworks built upon the four 

regression foundations (FLR, ILR, RLR, SWLR). Across all model families, the ensemble strategies 

produced a substantial enhancement in predictive accuracy relative to the corresponding single-model 

structures. The distributional behavior depicted in the ensemble prediction plots (Figure 6) provides a 

complementary perspective, illustrating how the ensembles reshape the error structure and stabilize 

the prediction outputs. For the FLR-based models, BNE-FLR achieved the strongest performance, with 

a testing MSE of 0.0031 and an RMSE of 0.0555. This represents a clear improvement over both NNE-

FLR (MSE = 0.0033, RMSE = 0.0576) and the best-performing single FLR variant (FLR-4; RMSE = 

0.0657). The BNE-FLR prediction plots show a notably uniform distribution, with fewer abrupt drops 

and tighter clustering around the upper probability band. This visual compactness indicates reduced 

variability and improved resilience to outlier behavior, confirming the numerical gains reported in 

Table 4. The ensemble gains were even more pronounced for the ILR models. BNE-ILR achieved an 

RMSE of 0.0392, representing nearly a sixfold improvement over the single ILR models, while NNE-

ILR also produced substantial reductions in error. The associated prediction distributions reveal a 

striking contrast with the single ILR curves: the ensemble outputs exhibit dense, high-level plateaus 

with markedly fewer low-probability excursions. This indicates that the neural ensemble mechanisms 

successfully compensate for the linear interaction model’s inherent sensitivity to noise and local 

gradient irregularities. A particularly notable outcome emerged from the RLR-based ensembles. While 

single RLR models struggled with overfitting and produced relatively high testing errors, BNE-RLR 

recorded a testing RMSE of 0.0381, representing one of the greatest improvements across all model 

families. Correspondingly, the BNE-RLR prediction plot displays a flattening of the irregular dips 

observed in the single RLR outputs, with the boosted ensemble effectively suppressing error spikes and 

stabilizing the prediction profile. This confirms that boosting can counteract the brittleness and 

variance amplification typically associated with robust regression in small or noisy datasets. 

   SWLR ensembles also benefited from the neural aggregation strategies. BNE-SWLR achieved an 

RMSE of 0.0398, a large improvement over the best single SWLR variant (RMSE = 0.1019). In the 

ensemble plots, the SWLR-based distributions show a clear upward shift with fewer pronounced 

downward deviations, revealing that the ensemble successfully mitigates the instability introduced by 

stepwise variable selection. The resulting curves resemble those of the FLR-based ensembles in terms 

of smoothness and compactness, despite SWLR’s more rigid modelling structure. Taken together, the 

numerical results and plot-based diagnostics converge on the same conclusion: neural ensembles, 

especially boosted ensembles, significantly enhance predictive reliability across all regression families. 

The ensembles reduce both systematic errors (lower bias) and random fluctuations (lower variance), 

while producing prediction distributions that are smoother, more concentrated, and far less prone to 

extreme deviations. These attributes confirm the ensembles’ superior ability to generalize across 

varying water-quality conditions and highlight the value of integrating neural aggregation mechanisms 

with traditional regression frameworks. 

Table 4: Neural Network Ensemble Performance Metrics 

Models Training Testing 

MSE RMSE MAE SMAPE MSE RMSE MAE SMAPE 

NNE-FLR 0.0062 0.0786 0.0002 0.0859 0.0033 0.0576 5E-05 0.1078 

BNE-FLR 0.0061 0.0780 7.97E-05 0.0826 0.0031 0.0555 1.27E-05 0.1009 

NNE-ILR 0.0059 0.0768 0.0016 0.1048 0.0030 0.0544 0.0002 0.0543 

BNE-ILR 0.0034 0.0587 0.0018 0.0817 0.0015 0.0392 0.0007 0.0292 

NNE-RLR 0.0059 0.0767 0.0002 0.0804 0.0039 0.0622 0.0014 0.0588 

BNE-RLR 0.0013 0.0366 0.0012 -0.0033 0.0015 0.0381 0.0003 0.0376 

NNE-SWLR 0.0046 0.0676 0.0020 0.0960 0.0020 0.0449 0.0008 0.0424 

BNE-SWLR 0.0039 0.0625 0.0003 0.0135 0.0016 0.0398 0.0002 0.0316 
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Figure 6: Ensemble results distributional behavior 

3.4 Real World Applications of Predictive Models for BOD in the Ganga River 

The radar plots (Figure 7) presented earlier compare the predictive performance (RMSE, MAE, SMAPE) 

across various model types, including regression-based models (e.g., FLR, ILR, RLR, SWLR) and more 

complex neural–network–based ensemble models. In many practical applications, simpler regression 

models (e.g., FLR) tend to achieve moderate accuracy; their lower RMSE and MAE relative to some 

more naive regression variants, suggest that they can capture some of the nonlinear patterns typical in 

river water quality dynamics. Nevertheless, such models are limited by inherent model biases, restricted 

functional form, and potential overfitting or underfitting, especially when river chemistry responds to 

complex, interacting environmental drivers. By contrast, empirical evidence from recent water quality 

modelling studies confirms that neural network and ensemble approaches, especially hybrid or stacked 

models, often deliver substantially improved predictive accuracy. For example, in a survey on the Karun 

River, a hybrid model combining wavelet-transformed features with a Random Forest (RF) base 

achieved low error values for BOD prediction, outperforming both pure tree-based and regression tree 

models. [26] Similarly, an investigation on the Jinjiang River basin proposed a hybrid model based on 

a Long Short-Term Memory (LSTM) neural network with discrete wavelet transform (DWT) 
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preprocessing (ANN WT LSTM), which delivered superior performance compared with conventional 

models. A more recent demonstration for the Godavari River Basin used a stacking ANN meta model 

built on multiple machine learning base learners (e.g., RF, boosting methods) and showed that such 

ensemble models significantly increased the coefficient of determination for BOD predictions, as proved 

by [27]. These findings support the inference from the radar plots that bilayer neural network ensembles 

can robustly capture complex, nonlinear, and interacting influences on water quality than simpler 

models [28]. 

   From a management perspective, high-accuracy predictive models offer tangible benefits for real-

world water quality control. First, early warning systems may be built to provide timely and reliable 

forecasts of BOD spikes or organic load surges that can trigger alerts before oxygen depletion events 

threaten aquatic life or public health. Second, treatment optimization becomes feasible when 

wastewater treatment plants or remediation systems can adjust aeration, chemical dosing, or discharge 

control based on predicted BOD fluctuations rather than relying solely on measured BOD (which 

requires a lagging incubation period). Third, pollution source identification and hotspot detection can 

be supported by coupling spatially distributed water quality data (e.g., from multiple monitoring 

stations) with model predictions, so that stakeholders can map where organic loading is most severe, 

thereby aiding targeted regulatory action or cleanup. Fourth, predictive models offer decision support 

for river restoration: what-if scenarios (e.g., changes in land use, discharge regulations, runoff controls) 

can be simulated to evaluate their potential impact on BOD and overall water quality. Finally, when 

integrated with real-time or near real-time monitoring networks (sensors for DO, TSS, flow, 

temperature, etc.), these models can power dynamic, adaptive management: as new data come in, 

forecasts update, enabling real-time response to pollution events. The empirical literature supports the 

conclusion that a hybrid framework combining multivariate regression (for interpretability) with neural 

network or ensemble models (for predictive power) yields a robust, scalable, and practical tool for real-

time water quality prediction and management. This strongly suggests that applying BNE style models 

to a complex, large river system such as the Ganga River is not only methodologically defensible but 

potentially transformative for ecological integrity and public health protection in practice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Spider and radar plots for both single and ensemble models 
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4. Conclusion 

This study demonstrates the efficacy of a hybrid data-driven framework combining multivariate 

regression models with neural network ensemble techniques for predicting Biochemical Oxygen 

Demand in the Ganga River. Among the regression models, Fine-Tree Linear Regression exhibited 

superior performance relative to Interactive Linear Regression, Robust Linear Regression, and Stepwise 

Linear Regression, with FLR-4 achieving the lowest testing errors. Nonetheless, the integration of 

regression outputs into Bilayer Neural Ensemble models substantially enhanced predictive accuracy 

and stability, with BNE-RLR and BNE-ILR producing the most reliable forecasts across all evaluation 

metrics (MSE, RMSE, MAE, and SMAPE). Correlation analysis highlighted that physiochemical 

parameters such as pH, conductivity, and dissolved oxygen contributed moderately to BOD variation, 

while microbial indicators showed weak associations, emphasizing the limitations of linear approaches 

in capturing complex, nonlinear interactions inherent in river water-quality dynamics. The neural 

network ensemble framework effectively addressed these limitations, leveraging complementary 

strengths of individual regression models to reduce systematic and random errors. Conclusively, the 

findings indicate that coupling multivariate regression with neural network ensemble modeling offers 

a robust, scalable, and practical tool for real-time and accurate BOD prediction. This approach not only 

improves forecasting reliability but also provides actionable insights for water-quality management, 

early warning systems, pollution source identification, and informed decision-making for ecological 

restoration in major river systems such as the Ganga. The study underscores the potential of hybrid 

predictive frameworks to enhance environmental monitoring and support sustainable riverine 

management practices. 
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