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1. Introduction  

The persistence of degraded WQ in many rapidly growing regions has intensified concerns over public 

health, ecological stability, and long-term resource security. Among the numerous WQ indicators, Turb 

remains one of the most immediate and sensitive signatures of contamination, reflecting the presence 

of suspended solids, colloidal materials, microbial loads, and dissolved organic matter[1]. Elevated Turb 

compromises treatment efficiency, disrupts aquatic ecosystems, and increases the likelihood of 

pathogenic survival, making it a central parameter in both regulatory monitoring and scientific 
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(Alum), free CO₂, and calcium (Ca) was preprocessed through rigorous screening, normalization, 

distributional evaluation, and stratified data partitioning. Model development involved the systematic tuning 

of structural and kernel-based hyperparameters, enabling the construction of four high-performance 

predictive systems, each with two modelling groups: Neural Network (NN-G1/G2), Bagged Trees (BT-G1/G2), 

Gaussian Process Regression (GPR-G1/G2), and Support Vector Machine (SVM-G1/G2). Across all 

configurations, the BT-G1 model delivered the strongest predictive generalization (testing RMSE = 0.0671, 
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assessments. As global water demand accelerates and urbanization drives changes in land use, the 

dynamics of Turb have become more complex, necessitating analytical frameworks capable of capturing 

subtle non-linear interactions among environmental, chemical, and physicochemical variables[2]. 

   Conventional empirical and regression-based methods have provided valuable insights into WQ 

dynamics, but they often struggle to account for multi-scale relationships embedded within 

groundwater systems [3]. Recent advances in high-precision sensing, laboratory analytics, and 

computational modeling have enabled more flexible, non-linear predictive frameworks that outperform 

traditional approaches in terms of accuracy, generalization, and robustness. Studies have increasingly 

demonstrated that Turb is influenced not only by visible particulate load but also by deeper 

hydrochemical characteristics such as E C, hardness, Alk, and Free CO2, which act as proxies for mineral 

dissolution, surface runoff behavior, and watershed geochemistry (WHO, 2022). These 

interdependencies highlight the need for modeling strategies that move beyond simple linearity [4]. 

   In response to these challenges, ML methods have gained prominence for modelling complex WQ 

relationships in treatment plants and distribution systems. NN, tree-based models, and kernel methods 

have been successfully used to predict Turb, coagulant dosage, and composite WQ indices, often 

outperforming traditional linear or purely mechanistic approaches when trained on operational data. 

In particular, previous work at TWTP has demonstrated that data-driven models can predict treated 

pH, Turb, TDS, and Hard with high accuracy, and that metaheuristically optimized learning algorithms 

further enhance performance for local WQ parameters. Parallel developments in feature selection and 

interpretable modelling, such as mRMR, statistical ranking, and SHAP, have shown that it is possible 

to identify dominant predictors, reduce redundancy, and quantify how individual variables influence 

model outputs in WQ and related environmental applications[5] [6][7]. 

   Furthermore, global assessments from regions facing rapid population growth and water-demand 

pressures have emphasized the importance of integrating physicochemical indicators into predictive 

models to improve risk assessment at early stages [8]. The use of feature-attribution mechanisms such 

as SHAP values has likewise become increasingly relevant, allowing researchers to identify the relative 

contributions of each input parameter to model outputs, thereby supporting transparent interpretation 

and science-based policy planning. By quantifying how each water-quality parameter influences Turb, 

these methods enhance interpretability, strengthen environmental decision-making, and help align 

scientific findings with water-management strategies[9][10]. 

   Against this backdrop, the present study develops a Turb prediction framework based on non-linear 

computational models calibrated using physicochemical variables, including E C, pH, hardness, Alk, Ca, 

free CO₂, temperature, and Alum concentration. The study integrates correlation analysis, statistical 

significance testing, and detailed SHAP-derived feature importance to clarify each variable’s influence 

on Turb dynamics. By combining high-resolution analytics with interpretable modeling, this research 

contributes a comprehensive and policy-relevant assessment suitable for regions where Turb remains a 

persistent environmental and socioeconomic concern. Figure 1 showcases The Raw data instances plot. 
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                                   Figure 1: Highlights the raw data instances' base plot.  

2.0 Study Location and Data Source  

2.1 Study Location  

Tamburawa is a prominent town in Dawakin Kudu Local Government, located fifteen kilometers from 

Kano City in Kano State, Nigeria. The inhabitants of Tamburawa are Hausa, mostly lecturers, farmers, 

union workers, and businessmen. Irrigation farming is widely practiced. The TWTP is located along the 

Kano–Zaria Road in Kano State, Nigeria (Latitude: 11.8518° N, Longitude: 8.5359° E) [7]. The plant 

abstracts raw water from the Challawa River, a tributary of the Kano River, and treats it to supply 

potable water to Kano metropolis and its surrounding communities [11]. The map of the study area is 

highlighted in Figure 2. Kano is situated in the semi-arid Sahel region of sub-Saharan Africa, 

characterized by distinct wet (May–October) and dry (November–April) seasons, which significantly 

influence raw WQ due to surface runoff, sediment loading, and evaporation rates. These 

hydrometeorological dynamics make the Tamburawa facility an ideal case study for developing 

seasonally adaptive coagulant dosing models. 
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Figure 2: Illustrates the map of the study area 

2.2 Data Sources and Preprocessing 

This study employed a field-acquired dataset from the TWTP in Kano State, Nigeria. A total of valid 

observations was collected from daily monitoring logs under real operational conditions during two 

distinct meteorological periods, dry and wet seasons to evaluate the influence of seasonal variability. 

Each observation includes measurements of key physicochemical WQ parameters: WT, Turb, pH, EC, 

Alk, HD, Ca, CO₂, and TDS. The response variable is Turb, expressed in mg/L or equivalent normalized 

units, representing the amount of chemical input required to optimize the process. All measurements 

adhered to Nigerian Standard for Drinking Water protocols and WHO guidelines, with regular 

calibration of field instruments by trained plant technicians [13]. An accurate preprocessing pipeline 

was implemented to ensure data quality and model robustness. Missing values were imputed using 

linear interpolation to preserve temporal trends. Outliers were identified and removed using the 

interquartile range (IQR) method, while physically unlikely values were also excluded [14] [15]. All 

features were normalized using min–max scaling to transform variables into the [0, 1] range, thereby 

enhancing the stability of gradient-sensitive and distance-based ML models. The normalization 

followed Equation (1): 

Xnormalized−i =  
xinitial−u−  xrange−min

xrange−max −  xrange−min
                                           (1) 

 

Where 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑢  present the data to be normalized, 𝑥𝑟𝑎𝑛𝑔𝑒−𝑚𝑖𝑛 a𝑥range−max  present the minimum and 

maximum data in the variable range and 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑−𝑖 present the normalized data. Seasonal identifiers 

were retained in the dataset to enable stratified modeling, offering insights into how hydrological and 

climatic shifts, such as elevated Alum during rainfall or parameter concentration changes in dry 

seasons, affect Turb. This dual-season structure supports the development of adaptive, season-sensitive 

predictive models; Furthermore, the dataset was partitioned into two subsets: 70% for model 

calibration and 30% for validation, ensuring the generalizability of the developed models [16]. 
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3.0 Materials and Methods 

3.1 Model Building 

The development of the Turb-prediction framework relied on a suite of advanced, data-driven modeling 

techniques carefully selected to capture the non-linear and multi-scale interactions governing WQ. Each 

model class was chosen for its demonstrated capacity to extract complex relationships among 

physicochemical variables, an approach supported by recent hydrological and environmental-data 

research [17]. The model-building process commenced with the formulation of input–output structures. 

Turb served as the target variable, while EC, pH, hardness, Alk, calcium, free CO₂, temperature, Alum 

concentration, and related parameters formed the predictor set. These variables were incorporated 

based on their known environmental relevance and their statistical contributions identified during 

preliminary exploratory analysis. The resulting multivariate structure allowed the A diverse array of 

modeling techniques was employed to improve predictive robustness and avoid methodological bias. 

NN models (NN-G1 and NN-G2) were constructed to approximate high-dimensional, non-linear 

relationships. Their architecture consisted of interconnected processing units arranged in layers, 

enabling the extraction of subtle patterns that are often inaccessible through linear methods, as 

documented in earlier groundwater-quality studies [18]. Feedforward topology was adopted for its 

stability and interpretability, with weights optimized during training to minimize error between 

predicted and observed Turb values. All model families underwent a rigorous cycle of training, 

validation, and refinement. This involved parameter adjustment, structural optimization, and 

performance evaluation metrics. Cross-model comparison ensured that no single methodology 

dominated the analysis, and the final selection of optimal configurations was based strictly on empirical 

performance rather than algorithmic preference. This multi-framework approach provides resilience 

against model-specific weaknesses, offering a robust representation of Turb dynamics across varied 

hydrochemical conditions [19]. Figure 3 showcases the step-by-step modelling process. By integrating 

multiple modeling strategies, the model-building process established a comprehensive predictive 

framework capable of capturing the nuanced interactions driving Turb in groundwater. This 

methodological diversity enhances scientific reliability, supports transparent feature interpretation, 

and ensures that the resulting predictions align with real-world hydrochemical behaviors. models to 

represent Turb not as an isolated parameter but as the outcome of interacting chemical and 

physicochemical processes [20]. 

3.2 Neural Network (NN)  

A NN is a data-driven universal approximator that represents an unknown mapping between an input 

vector and an output by stacking linear combinations and nonlinear activation functions. Conceptually, 

the network learns a set of intermediate “features” in a hidden layer and then combines these features 

to approximate the target function. This provides a flexible way to capture nonlinear relationships and 

interactions among input variables without specifying a fixed analytical form in advance [5]. 

3.3 Boosted Regression Tree (BT)  

BT has combined many simple decision trees into an additive ensemble that progressively refines the 

approximation of the target function. Each individual tree partitions the input space into subregions 

and assigns a constant prediction within each region [21]. On its own, a shallow tree is a weak learner; 

however, when many such trees are combined through gradient boosting, the ensemble becomes a 

powerful nonlinear model that can describe interactions and the Threshold effect [22]. 
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3.4 Gaussian Process Regression (GPR) 

GPR provides a nonparametric Bayesian framework for regression, where the unknown function f(x) is 

treated as a sample from a Gaussian process characterized by a mean function and a covariance (kernel) 

function. Rather than specifying a finite-dimensional parametric form for f(x), GPR defines a 

distribution over functions and uses the data to update this distribution, yielding predictions with 

associated uncertainty[23]. 

3.5 Support Vector Regression (SVR)  

SVR seeks a function f(x) that is as “flat” as possible while approximating the training data within a 

specified tolerance. Flatness is enforced by minimizing the norm of the weight vector in a high-

dimensional feature space, while deviations larger than an ε-insensitive band are penalized through 

slack variables. Nonlinearity is introduced via kernel functions, which implicitly map inputs into the 

feature space without computing the mapping explicitly [24]. 

Figure 3: The step-by-step modelling Process 

3.6 Feature Selection and Statistical Analysis 

Feature selection and statistical analysis were carried out to identify the most informative predictors of 

Turb among WT, pH, EC, Alum, Hard, Ca, FREECO2, TDS, and Alk, and to reduce redundancy arising 

from the strong internal correlations within the ionic cluster. Three complementary approaches were 

used: (i) Pearson correlation analysis to explore pairwise relationships and potential multicollinearity; 

(ii) mRMR ranking to select variables that are simultaneously relevant to Turb and non-redundant with 

respect to each other; and (iii) F-test–based ranking to quantify the strength of the linear association 

between each individual predictor and Turb. In addition, standard error statistics were computed to 

evaluate the predictive performance of the ML models using the selected features. All computations 

were performed on the normalized. Pearson correlation analysis was first applied to quantify pairwise 
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linear relationships between Turb and each explanatory variable, as well as among the explanatory 

variables themselves. 

 Maximize the average mutual information between the selected features and the target variable 

𝐷 =
1

|𝑆|
∑ 𝐼(∫ 𝑖∈𝒮 ∫ 𝑖𝔦, ∫ 𝑖𝑐)                                                                                                 (2) 

Minimize the average mutual information among the selected features themselves 

𝑅 =
1

|𝑆|2
 ∑ 𝐼(∫ 𝑖∈𝒮 ∫ 𝑖𝔦, ∫ 𝑖𝑗)                                                                                                        (3) 

   In addition to the MRMR approach, the F-Test feature selection algorithm was employed to assess the 

statistical significance of each independent variable with respect to the response variable, alum dosage. 

The F-test evaluates the ratio of variance between groups to the variance within groups, essentially 

measuring the discriminatory power of each feature in explaining output variability. [25]. This method 

is particularly effective in ranking continuous input variables when the target is also constant, as is the 

case in this study. 

𝐹 =
(

𝑆𝑆𝑅

𝑃
)

(𝑆𝑆𝐸/(𝑛−𝑝−1))
                                                                                                                 (4) 

   SSR is the sum of squares due to regression, while SSE is the sum of square of error, p number of 

predictors and n is the number of observations 

   However, F-Test  is a multivariate, distance-based algorithm that estimates the relevance of features 

by assessing their ability to differentiate between instances with similar and dissimilar output values 

[26]. Unlike univariate methods such as the F-Test, which evaluates feature interactions and local 

instance dependencies, making it particularly effective for nonlinear and correlated datasets. 

𝑊(𝐴) =
1

𝑚
∑ (

|𝑦𝑖−𝑦𝑖′|

𝑟𝑎𝑛𝑔𝑒 (𝑦)
  .

|𝑥𝑖.𝐴−𝑥′𝑖.𝐴|

𝑟𝑎𝑛𝑔𝑒(𝐴)

𝑚
𝑖=1                                                                                 (5) 

   Where m is the number of iterations. xi is a randomly chosen instance. xi’ is the nearest neighbor. yi, 

y’ is the corresponding measurement of the difference in target values, and (A, xi, x’) is the normalized 

differences in feature A’s value between xi and xi’  

3.7 SHAP-Based Feature Importance Analysis 

SHAP were used to quantify the contribution of each input variable to the predicted Turb and to provide 

an interpretable, model-consistent measure of feature importance. SHAP is based on cooperative game 

theory and decomposes the prediction of a machine-learning model for a given sample into additive 

contributions from each input variable. In this study, SHAP analysis was applied to the final selected 

model (best-performing configuration) trained on the normalized dataset, using the same training-

testing split as in the performance evaluation. All SHAP calculations were performed on the normalized 

features to ensure comparability of contributions across variables [27].  

Φi = ∑
𝑆(𝑁)−(𝑆)−1

(𝑁)
[𝑓(𝑆𝑈{𝑖}) − 𝑓(𝑆)]𝑆⊊𝑁{𝑖}                                                                                                  (6) 

   Φi where is the value for feature I its contribution to the prediction N: set of all features S; is subset of 

feature not containing I f(s) is the model output using only feature in subset S f(S u{i}) is the model 

output using S plus feature I and yet the fraction is a weighting term ensuring fairness over. 
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3.8 Performance Evaluation Criteria  

A determined set of criteria and measurements is used to assess each predictive performance's 

effectiveness, efficiency, and superiority. They provide a foundation for evaluating performance and 

helping decision-makers make informed choices about awards, promotions, or performance 

enhancements. Five statistical metrics were used in this study to assess the models' accuracy: the RMSE, 

MSE, and MAE. However, Table 1 presents the formal ranges of the performance criteria that are widely 

used in research to assess the expected performance of the model [14]. 

 Table 1: Performance Evaluation Criteria 

Name Formula Range 
RMSE 

RMSE =  √
1

𝑛
∑(𝑦𝑖 − yˉ)2 

𝑛

𝑖=1

 

 

(0 < RMSE < ∞) 

MAE 
MAE =  

1

𝑛
∑/𝑦𝑖 − yˉ/2 

𝑛

𝑖=1

 

 

(0 < MAE < ∞) 

MSE 
MSE =  

1

𝑛
∑(𝑦𝑖 − yˉ)2 

𝑛

𝑖=1

 

 

(0 < MSE < 100) 

 

   The combination of RMSE, MAE, and MSE offers a holistic understanding of model performance from 

both precision and error perspectives. These metrics were applied consistently across training and 

testing phases to ensure consistency and detect any potential overfitting.  

4.0 Results and Discussion 

4.1 Hyperparameter Tuning 

Hyperparameter tuning was carried out to ensure that each model operated in a regime that balanced 

goodness of fit with generalization capability. Rather than relying on default settings, key 

hyperparameters were systematically varied within plausible ranges, and their combinations were 

evaluated using the training data, with an internal validation step to assess performance. For all models, 

the objective was to minimize the prediction error on unseen data, as quantified by the error metrics, 

while avoiding overly complex configurations that might overfit the training set. For the neural network, 

tuning focused on the number of hidden neurons, the choice of activation function in the hidden layer, 

the learning rate, and the maximum number of training iterations [22]. A compact architecture was 

initially adopted and gradually expanded by increasing the number of hidden neurons until no further 

reduction in validation error was observed. Learning rates were explored over a range of small values 

to ensure stable convergence, and early stopping was applied by monitoring the error on a validation 

subset drawn from the training data. This procedure prevented the network from memorizing noise and 

ensured that the final configuration provided a smooth yet flexible approximation of the underlying 

mapping. In the BT model, the main hyperparameters were the number of trees, the maximum depth 

of each tree, and the learning rate (shrinkage). Shallow trees were preferred as base learners to maintain 

high bias and low variance at the tree level, while the ensemble progressively reduced bias through 

boosting. The learning rate was varied over small values, with lower rates generally requiring more trees 

but yielding more stable generalization. Combinations of tree depth, number of trees, and learning rate 

were compared using the training–validation split, and the configuration that minimized validation 

error without evidence of overfitting was selected. For Gaussian process regression, hyperparameter 

tuning concentrated on the kernel parameters and noise variance. In the radial basis function kernel, 

the length scale controls how rapidly the function can vary with changes in the input variables, and the 
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signal variance sets the overall amplitude of fluctuations. These parameters, together with the 

observation noise variance, were adjusted by maximizing the marginal likelihood of the training data, 

with additional checks based on validation error to avoid excessively small length scales that would 

produce overly wiggly functions. The final setting represented a compromise between closely tracking 

the data and maintaining a smooth, physically plausible response surface. In the support vector 

regression model, the regularization parameter C, the ε-insensitive margin, and the kernel width 

parameter for the radial basis function were tuned jointly. The parameter C controls the trade-off 

between model flatness and tolerance of training errors, ε defines the size of the zone within which 

errors are not penalized, and the kernel width governs the degree of nonlinearity in the mapping. A grid 

of candidate values for C, ε, and the kernel width was explored, and the combination yielding the lowest 

validation error while maintaining a stable error pattern between training and validation sets was 

selected. Across all models, the same training–validation strategy and normalized inputs were used, 

ensuring that differences in tuned configurations reflected intrinsic model behavior rather than 

artefacts of the tuning protocol [28]. 

4.2 Correlation Analysis  

The correlation Analysis for WT, pH, EC, Alum, Hard, Ca, FREECO2, TDS, Alk, and Turb shows that 

the dataset is dominated by a coherent ionic cluster, while Turb behaves more independently. EC is 

strongly and positively correlated with TDS, Hard, Ca, and Alk, and the corresponding scatter plots 

show tight, near-linear trends. This indicates that EC and TDS are acting as bulk indicators of dissolved 

ions, with Hard and Ca representing the contribution of divalent cations, and Alk reflecting the 

buffering capacity associated with the carbonate system. Together, EC, TDS, Hard, Ca, and Alk form a 

compact “ionic backbone” that characterizes the chemical regime of the water system. FREE-CO2 also 

shows moderate associations with EC, TDS, and Hard, suggesting that gas–water interactions and 

carbonate equilibria are linked to the same geochemical processes controlling the ionic cluster. In 

disparity, Turb displays weak correlations with EC, TDS, Hard, Ca, and Alk, and its scatter plots against 

these variables are diffuse. This pattern implies that Turb is largely governed by physical processes such 

as runoff, erosion, resuspension, and local disturbances, rather than by the gradual changes in ionic 

strength captured by the chemical variables. WT and pH similarly exhibit only modest correlations with 

the ionic cluster, indicating that temperature and acid–base conditions are reasonably buffered within 

the observed range and do not drive large, directly linear changes in Turb. Alum is only weakly 

correlated with most of the ionic variables, which is consistent with its role as a coagulant rather than 

an intrinsic component of the natural ionic background. Overall, the correlation structure confirms that 

while EC, TDS, Hard, Ca, Alk, and FREECO2 describe a strongly coupled chemical subsystem, Turb 

responds to a partially independent set of drivers. This separation explains why models that combine a 

well-chosen subset of ionic variables with additional descriptors such as WT, Alum, and FREECO2 are 

better able to capture the variability in Turb than configurations that treat all variables as equally 

informative. Yet Figure 4 indicates the Correlation analysis of the variables.  

 

 

 

 

 



Techno-computing Journal (2025)  
 Ismail A. Mahmoud et al.  

 

26 
 

 

 

                                     Figure 4: Correlation Metrics of variables.  

4.3 Predictive Model Results  

Table 2 summarizes the performance of the four employed ML algorithms under the two variable 

groupings (G1 and G2) using RMSE, MSE, and MAE for both training and testing phases. Across all 

metrics, the Group 1 configurations clearly outperform the corresponding Group 2 models, confirming 

the importance of the G1 variable structure for accurate prediction of the target water-quality 

parameter. Among all configurations, BT-G1 achieves the best overall performance. Its training RMSE 

(0.0913) and MAE (0.0427) are the lowest in the dataset, and these advantages are retained in the 

testing phase, where BT-G1 records the smallest RMSE (0.0671) and MAE (0.0389). The similarity 

between training and testing errors indicates that BT-G1 captures the dominant relationships in the 

data without overfitting, and that the G1 predictors supply a stable and informative representation of 

the system. NN-G1, GPR-G1, and SVM-G1 follow closely, with training RMSE values of 0.1205, 0.0973, 

and 0.0997, and testing RMSE values of 0.0695, 0.0696, and 0.0835, respectively. Their MAE values 

remain in a narrow band on both datasets, suggesting that all G1 models provide consistent and reliable 

estimates, even though BT-G1 retains a small but clear advantage.  
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                                                          Table 2: The predicted ML Models Results  

 
RMSE MSE MAE RMSE MSE MAE 

NN-G1 0.12053 0.014529 0.055132 0.069471 0.004826 0.040052 

NN-G2 0.19404 0.03765 0.119 0.10736 0.011526 0.066624 

BT-G1 0.091267 0.00833 0.04273 0.067097 0.004502 0.03891 

BT-G2 0.14703 0.021619 0.082982 0.092289 0.008517 0.051825 

GPR-G1 0.097334 0.009474 0.048086 0.069628 0.004848 0.07921 

GPR-G2 0.13672 0.018692 0.082721 0.11726 0.013751 0.068846 

SVM-G1 0.099736 0.009947 0.04716 0.083545 0.00698 0.04176 

SVM-G2 0.15004 0.022512 0.084397 0.11293 0.012754 0.45147 

The behavior of the Group 2 models contrasts sharply with these results. For each algorithm, the G2 

configuration produces larger errors in both phases. NN-G2 shows a substantial increase in training 

RMSE (0.1940) and MAE (0.1190) compared with NN-G1, and its testing RMSE (0.1074) and MAE 

(0.0666) also remain noticeably higher. BT-G2 exhibits a similar degradation, with training RMSE 

rising to 0.1470 and testing RMSE to 0.0923, accompanied by higher MAE values than BT-G1 in both 

phases. GPR-G2 is particularly affected, with testing RMSE increasing to 0.1173 and MAE to 0.0688, 

indicating that the additional or altered predictors in G2 introduce variability that the model cannot 

generalize effectively. The SVM models illustrate the impact of the variable structure most clearly. While 

SVM-G1 maintains moderate errors (training RMSE 0.0997, testing RMSE 0.0835; testing MAE 

0.0418), SVM-G2 displays a drastic deterioration in testing MAE, which jumps to 0.4515 despite a 

testing RMSE of 0.1129. This unusually large MAE indicates that, under the G2 variable set, the SVM 

model fails to capture the distribution of the target variable and produces some very large individual 

prediction errors. This breakdown suggests that G2 likely contains redundant or noisy predictors that 

disrupt the margin-based decision structure of the SVM, making it highly sensitive to specific 

observations in the test set. Taken together, these results show that the main driver of predictive 

performance is not the choice of algorithm alone but the quality and structure of the input variables. 

Figure 5 highlights a Taylor base plot for MSE for both training and testing phases. All four algorithms 

benefit from the G1 configuration, which yields low and well-balanced training and testing errors, 

whereas the G2 configuration consistently degrades accuracy and stability, and in the case of SVM-G2, 

leads to an almost complete loss of reliability. This confirms that a compact, physically meaningful 

variable set is essential for building robust machine-learning models for WQ prediction. 

 

Figure 5: Highlighted A Taylor Plot for both training and testing MSE  
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4.4 Feature Importance Using the mRMR Algorithm 

The mRMR algorithm ranks features by identifying those that provide the highest predictive relevance 

to the target variable, in this case, Turb, while minimizing redundancy among the predictor variables. 

The objective is to select a set of features that collectively offer the greatest explanatory power without 

duplicating information, which is essential in WQ modeling where many physicochemical parameters 

exhibit high intercorrelation. In the provided mRMR output, Alum emerged as the most influential 

variable, ranking highest in importance. This observation is consistent with the treatment processes at 

the TWTP, where alum is the primary coagulant applied to destabilize colloidal particles. Higher alum 

dosing typically corresponds to raw water of elevated Turb, and its relationship with Turb tends to be 

monotonic and strong, making the parameter both relevant and non-redundant. The high mRMR score, 

therefore, reflects its direct operational linkage and sensitivity to Turb fluctuations in surface water 

systems. The second-ranking feature, TDS, indicates a strong association between dissolved ionic 

content and suspended matter behavior. Elevated TDS often coincides with anthropogenic runoff or 

seasonal hydrological inputs that simultaneously raise particulate loads. Although TDS and Turb are 

not mechanistically identical, their shared environmental drivers explain why the mRMR algorithm 

retains TDS as highly relevant yet not heavily overlapping with alum or other variables. Hardness and 

E C follow in the importance hierarchy. Their significance suggests that mineral content and ionic 

strength exhibit indirect relationships with Turb, possibly through geogenic contributions or water–

sediment interactions. EC, in particular, is widely recognized as a key indicator of overall WQ variability 

in semi-arid regions and contributes unique information that mRMR deems valuable without excessive 

redundancy. Ca, FREE CO₂, pH, and WT appear in the mid-to-lower ranks. These variables influence 

floc formation, solubility equilibria, and biological activity; however, their predictive contribution to 

Turb is comparatively weaker or partly redundant with other parameters. For example, pH affects 

coagulation efficiency, but its impact is largely mediated through alum dosing and Alk, which may 

explain why mRMR reduces its importance when alum is already selected. The lowest-ranking 

variables, such as Alk and Turb itself (when used redundantly in multi-step feature selection), show 

either redundancy with stronger predictors or limited independent explanatory power. Their lower rank 

does not imply irrelevance scientifically but highlights that they add minimal additional information to 

the model once higher-ranking variables are considered, yet ranking instances are highlighted in Figure 

6. 

 

 

 

 

 

 

 

 

Figure 6: Illustrates the feature Ranking based on mRmR 
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4.5 F-Test Feature Importance Analysis 

The F-test ranking provides a statistically grounded evaluation of how strongly each physicochemical 

parameter contributes to explaining the variability in Turb at the TWTP. In this analysis, Alum 

concentration emerges as the dominant feature, exhibiting the highest F-score. This indicates a 

pronounced discriminatory power, reflecting the crucial role of coagulant dosing in shaping particle 

aggregation and subsequent Turb reduction. Such dominance is consistent with established 

coagulation–flocculation mechanisms where alum governs colloidal destabilization, directly 

influencing clarity outcomes [29]. Following Alum, Hard, Ca, and EC show progressively lower but still 

meaningful F-scores. Their positions in the ranking highlight their relevance in characterizing the ionic 

environment of the water column. Hard and Ca influence particle interactions and floc density, which 

in turn affects the settling dynamics and final Turb levels after treatment. Meanwhile, EC serves as an 

integrative indicator of dissolved ionic species, indirectly reflecting source-water characteristics that 

modulate coagulation requirements. The mid-tier variables free CO₂, Alk, and pH demonstrate 

moderate statistical influence. Their F-scores reflect the buffering conditions and acid–base equilibria 

that govern coagulant effectiveness. Variations in Alk and pH can alter Alum hydrolysis species, 

changing floc formation behavior and thus contributing to Turb variability. Although their influence is 

not as strong as Alum or hardness, their contribution remains essential for process stability and optimal 

chemical performance. Towards the lower end of the ranking, WT and TDS register the smallest F-

scores. While these factors affect fluid viscosity, microbial activity, and solubility dynamics, their direct 

statistical separation from Turb outcomes appears limited in the Tamburawa dataset. Their behavior 

suggests that short-term Turb fluctuations at the plant are less sensitive to temperature or dissolved 

solids than to coagulation chemistry and ionic balance. The Feature ranking based F-test was 

demonstrate in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Illustrates the feature Ranking based F-Test  
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4.6 SHAP Feature Influence Analysis 

The SHAP evaluation provides a detailed, additive decomposition of how each predictor contributes to 

Turb fluctuations, revealing not only the ranking of influential variables but also the magnitude of their 

marginal impact on model output. In this analysis, E C stands unequivocally as the dominant driver of 

Turb predictions, with a mean absolute SHAP value of 0.02911, far exceeding that of any other 

parameter. This finding emphasizes the strong sensitivity of Turb dynamics to the ionic strength of raw 

water entering the TWTP. Higher EC typically reflects elevated concentrations of dissolved ions, which 

alter charge interactions surrounding suspended particles, change double-layer thickness, and 

influence the ease with which coagulants destabilize colloidal matter. The prominence of EC in the 

SHAP ranking is therefore consistent with mechanistic Turb behavior in semi-arid river systems, where 

upstream agricultural runoff, mineral dissolution, and seasonal hydrology play substantial roles. 

Following EC, Turb (lagged or raw measurement) appears as the second-most influential feature, with 

a SHAP value of 0.00856. This aligns with the well-known persistence of suspended particle loads in 

natural water bodies, where Turb often exhibits autocorrelation due to the slow settling velocity of fine 

sediments and organic colloids. The strength of this influence demonstrates that prior Turb conditions 

remain an important determinant of subsequent treatment outcomes, particularly under high-flow or 

disturbance periods. Free CO₂, with a SHAP value of 0.00478, also exhibits a notable influence. Its 

position in the ranking reflects its role in shaping in-situ acidity and carbonate equilibria, thereby 

affecting both coagulant performance and particle stability. Elevated free CO₂ generally shifts pH 

downward, modifies aluminum speciation when alum is applied, and affects the charge profile of 

suspended solids, all of which directly influence Turb removal efficiency. The SHAP magnitude 

indicates that fluctuations in free CO₂ conditions have meaningful implications for day-to-day Turb 

dynamics in the plant, showing a SHAP value of 0.00221, which contributes moderately to Turb 

predictions through its control over fluid viscosity, settling behavior, and microbial interactions. Figure 

8 indicates the feature ranking based on SHAP. Higher temperatures tend to enhance Brownian motion, 

influence coagulation kinetics, and accelerate biodegradation processes. Although its influence is lower 

than EC or free CO₂, the SHAP ranking confirms that temperature variations still exert a non-negligible 

effect on Turb responses in the treatment system. The mid-lower tier of variables, Hardness, pH, Alum 

concentration, Calcium, and Alk, all register SHAP values below 0.002, indicating comparatively subtle 

contributions to prediction variability. Their reduced SHAP magnitudes do not imply irrelevance; 

rather, they suggest that, within the observed operating range of the Tamburawa plant, these 

parameters exhibit relatively stable dynamics or exert influence in conjunction with more dominant 

factors such as EC. For instance, alum dosing plays a central mechanistic role in Turb reduction, yet its 

SHAP value suggests that dosing levels were relatively consistent across the dataset, resulting in limited 

variability-driven impact on model predictions. Similarly, hardness and calcium influence coagulation 

conditions through ionic bridging and floc density, but their SHAP values show that day-to-day 

fluctuations were not strong enough to substantially drive model output on their own. 
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Figure 8: SHAP base feature Ranking  

4.7 Application of ML in Water Quality 

ML has become an important tool for modelling WQ processes, particularly in situations where 

nonlinear interactions, multicollinearity, and complex feedbacks limit the usefulness of traditional 

regression-based approaches. In drinking-water treatment, ML models have been used to predict key 

quality indicators such as Turb, residual Ca, TDS, and composite indices, as well as to support 

optimization of coagulant dosing and process control [30]. Studies in surface- and groundwater systems 

have shown that algorithms such as ANN, SVM, DT, and GPR can capture nonlinear and interaction 

effects between physicochemical variables with higher accuracy than conventional linear models when 

trained on adequately pre-processed datasets. These approaches have been applied for forecasting 

river-water quality, groundwater salinity and nutrient loads, and for predicting treated-water 

parameters at plant outlets, demonstrating their suitability for real-time or near–real-time decision 

support in water utilities [31]. In the context of coagulation and Turb control, tree-based and NN models 

are particularly attractive because they can represent threshold behavior and interaction effects 

between variables such as EC, Hard, Ca, pH, and coagulant dose without requiring explicit specification 

of functional forms. Several studies have reported successful application of ANN, SVM, and BT for 

predicting Turb after coagulation, flocculation, and filtration [32]. Kernel-based methods such as SVM 

and probabilistic models such as GPR have the additional advantage of offering flexible, nonparametric 

function approximations with built-in regularization, which is useful when dealing with relatively small 
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samples and correlated inputs typical of treatment-plant datasets [33].Furthermore, Figure 9 describe 

Violin Plot base on predicted and actual data set for both training and testing. 

 

 

                            Figure 9: A Violin plot based on actual and predicted data instances  

4.8 Socioeconomic and Environmental Implications 

The insights from this study have far-reaching implications for both environmental management and 

socioeconomic development. Turb directly influences the cost and complexity of water treatment; 

higher Turb levels demand increased filtration, chemical dosing, and energy consumption [12]. For 

communities reliant on groundwater for drinking and domestic use, poor Turb control translates into 

elevated financial burdens, infrastructure stress, and heightened public-health risks. This is particularly 

critical in regions where WT budgets are limited and dependence on groundwater is high. 

Environmentally, Turb affects aquatic life by reducing light penetration, impairing photosynthesis, and 

altering habitat quality. Persistent Turb may signal upstream erosion, land-use disturbances, or failing 

sanitation infrastructure, each carrying long-term ecological consequences. The identification of EC, 

free CO₂, and temperature as dominant drivers provides a strategic pathway for intervention, allowing 

authorities to focus monitoring efforts on parameters that offer the earliest warning signals of 

deteriorating WQ [34]. By combining statistical relevance with interpretable modeling, this study 

equips decision-makers with evidence-based insights needed for targeted regulation, resource 

allocation, and watershed protection strategies. These findings support sustainable groundwater 

management and align with broader global imperatives on environmental security and public health 

resilience. 

5.0 Conclusion  

This study demonstrates that Turb in groundwater systems can be reliably predicted using advanced 

data-driven modeling techniques supported by rigorous feature-attribution and statistical analyses. The 

boosted tree (BT-G1) model emerged as the most effective predictive framework, capturing the complex 

interactions between physicochemical variables and suspended-particle dynamics with the highest 

precision. The integration of correlation analysis, F-testing, and SHAP attribution produced a coherent 

interpretative structure. EC was consistently identified as the most critical predictor, followed by free 

CO₂ and temperature variables closely linked to both anthropogenic influence and natural geochemical 

processes. These findings underscore the multifactorial nature of Turb and highlight the importance of 

monitoring parameters that act as early indicators of watershed stress. Future research should expand 

the modeling framework by integrating hydrological variables such as flow rate, rainfall intensity, 

geological strata, and land-use patterns. Incorporating temporal sampling across seasons would also 

enhance model generalization and reveal how Turb responds to climatic variability. Additionally, 
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incorporating sensor-network data could facilitate real-time prediction systems, enabling proactive 

water-treatment and watershed-protection strategies. 
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