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1. Introduction 

Concrete is a widely used and robust construction material for various infrastructure applications such 

as building structures, bridges, and sewage pipes due to its durability. Despite its high compressive 

strength, concrete’s ability to resist tension and flexural loads is often restricted [1], [2]. However, a new 

approach is replacing the conventional approach of using mild steel reinforcement as the sole method 

to address these weaknesses. Researchers like [1], [3] [4] have explored other types of fibers, such as 

steel, glass, and polypropylene, and their combinations as potential alternatives to enhance concrete’s 

tensile and flexural strength. Numerous investigations have been carried out to examine the impact of 

steel fibers on the compressive strength of test samples [5], [6]. For instance, Yoo and Yoon, [6] found 

that including steel fibers did not significantly elevate the compressive strength of concrete. For 

instance, the compressive strength results for samples with a reinforcement ratio of 1.5% were 201 MPa 

for the control specimen and 211 MPa for the test specimen. Wu et al. [5] and Lee et al. [7] noted that 
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the addition of steel fibers had only a minor influence on the compressive strength of concrete 

specimens. Lee et al. (2017) [7] observed a mere 12% enhancement in compressive strength by adding 

0.9% steel fibers. 

      The findings of experiments conducted by [7], [8] Yoo et al. demonstrate that incorporating steel 

fibers significantly improves the flexural strength of test samples. [8] observed a 20% increase in 

flexural strength and a ductile failure mode due to the crack-bridging effect of steel fibers. He discovered 

that the equivalent flexural strength ratio, representing the ratio of the first peak strength to the energy 

absorption capacity, improved by 22% with the addition of steel fibers. These outcomes indicate that 

steel fibers enhance the samples’ flexural strength and energy absorption capacity. Research has shown 

that fuzzy logic is an easy-to-use tool that allows rules to be created based on experience, and fuzzy logic 

models can explain the relationship between input and output in simple language, which is especially 

useful when the connection between them is not straightforward. Several researchers, including [9] 

employed fuzzy logic and neural networks to investigate the impact of additives (e.g., low lime concrete 

and fly ash) on various properties of concrete, including compressive and flexural strength. The study’s 

findings demonstrated that fuzzy logic could accurately predict the compressive strength of concrete 

test specimens, and the statistical analysis revealed an RMS value of 0.28. Moreover, neural networking 

also successfully generated an RMS value of 1.79. 

      Furthermore, the Fuzzy model exhibited slope and intercept values of 0.9764 and 0.5842, 

respectively. In a study conducted by Thamma, [10], generate expression programming that accurately 

forecasts the compressive strength of cement mortar, yielding an RMS value of 1.4956. Similarly, Topçu 

and Saridemir, [11] utilized fuzzy logic and artificial neural networking to predict the compressive 

strength of concrete, achieving an RMS value of 2.02. The linear fit of the equation provided a slope 

value of 0.9824 and an intercept value of 0.6354. Based on the statistical analysis, both models 

demonstrated satisfactory and reliable outputs. A research project was conducted to investigate the 

mechanical behavior of HP-SFRC with different w/b ratios ranging from 0.45 to 0.35 and steel fiber 

volume fractions ranging from 0 to 1.5% (RI = 0 - 3.88), along with 10 and 15% silica fume replacements. 

Equations were formulated to predict compressive and flexural strength, accounting for the variations 

in size, shape, and length of the specimens. Furthermore, a power relationship between compressive 

and flexural strength was developed and compared to previous research and the American Concrete 

Institute model [12]. Finally, experimental data from earlier studies verified the proposed model’s 

accuracy. 

      To ensure the safety and advancement of construction projects, a computational analysis was 

conducted to simulate the compressive strength of High-Performance Steel Fiber Reinforced Concrete 

(HP-SFRC). This analysis considered eight input parameters related to the mixture proportions. A 

machine learning framework was incorporated to develop a predictive model for compressive strength 

to address the challenge of determining the strength of HP-SFRC in situ, which is influenced by site-

specific and ambient conditions. The model utilizes the known mixture proportions as inputs to 

estimate the compressive strength of HP-SFRC. This approach was adopted due to the complexities 

involved in accurately determining the strength on-site, as indicated by Sofi et al., [13]The article's 

primary aim is to investigate the effects of silica fume content and steel fiber volume fractions on the 

compressive strength and mechanical performance of HP-SFRC. It also aims to develop predictive 

models for HP-SFRC's compressive strength using machine learning techniques, specifically an 

adaptive neuro-fuzzy inference system (ANFIS), and compare their performance with traditional 

multiple linear regression (MLR) models. 

 

2. Material and Methods  

2.1 Materials and Mixture Proportions 

Ordinary Portland cement of 53 grade with a 28-day compressive strength of 54.5 MPa and a specific 

gravity of 3.15, along with silica fume as a supplementary cementitious material, was employed in the 

study. The silica fume had a specific surface area of 23000 m2/kg, a specific gravity of 2.25, and a 

fineness (as determined by residue on a 45 μm sieve) of 2%. The micro-silica was found to consist of 

88.7% silicon dioxide, 0.9% carbon, and 1.8% loss on ignition and was compliant with ACI 234R-1996 
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[14]. The research used a fine aggregate of river sand that passed through 4.75 mm and conformed to 

grading zone II of IS: 383-1978 (Standard, 2003) [15]. A coarse aggregate of crushed blue granite stones 

with a maximum size of 12.5 mm was also employed. A high-range water reducer admixture made of 

locally available sulfonated naphthalene formaldehyde condensate with a specific gravity of 1.20 was 

added to the mixes. Furthermore, crimped steel fibre with the physical properties given in Table 1 were 

implemented. 

Table 1: Physical properties of round crimped steel fibre 

Fibre Fibre 
diameter 

Fibre 
length 

Fibre 
wavelength 

Aspect 
ratio 
l/d 

Ultimate 
tensile strength 
fu 

Elastic tensile 
strength Ef 

Crimped 
round fibre 

0.9mm 35 and 
26mm 

0.8mm 80 and 
40 

1200Mpa 200Gpa 

 

      Following the guidelines and specifications of ACI 211.4R–93 [16] sixteen series of high-
performance steel fibre-reinforced concrete (HP-SFRC) mixes were formulated, and the mixture 
proportions used in this investigation are listed in Table 2. Each mix had water to binder ratio (w/b) 
and a fibre volume fraction (Vf) of 0.5, 1.0, or 1.5% by volume of concrete. Additionally, a 
superplasticizer with a dosage range of 1.75 to 2.5% by weight of binder was added to the mixes. To 
evaluate the performance of the HP-SFRC mixes. three cylinders 150 diameters × 300 mm height and 
three prisms 100 × 100 ×500 mm was produced for each mix and cured at 27 ± 2 ◦C in water. 
 

2.2 Methods of Testing 

A minimum of three samples were tested to calculate the average compressive strength. The 
compressive strength of the samples was tested following the [17] standards using a servo-controlled 
compression testing machine that applied a 14 MPa/min load. Similarly, the flexural strength (Modulus 
of rupture) test was conducted following the [18]standards and [19]by placing the samples on a 
supported span of 400 mm and loading them with a third-point loading on a 100 kN closed-loop 
hydraulically operated Universal Testing Machine at a 0.1 mm/min deformation rate. All the samples 
were cured in a laboratory setting before testing and retrieved and conditioned just before the test. 
 

2.3 Dataset and Preprocessing 

 
The dataset used in this study comprises 241 records collected from both experimental work and 

previous studies on high-performance steel fiber-reinforced concrete (HP-SFRC), including sources 

such as Liao et al. (2015a) and others [20], [21]. Each record includes eight input variables: cement 

content (385.3–679 kg), coarse aggregate (903–1295 kg), fine aggregate (365–902 kg), water (119.2–

221 kg), water-to-binder ratio (0.35–0.45), superplasticizer content (0–30.08 kg), silica fume content 

(0–120 kg), and steel fiber volume fraction (0–2.0%). The target variable is compressive strength, 

ranging from 43.6 to 100 MPa. Outliers related to non-standard curing conditions or extreme material 

properties were removed to ensure data quality. All input features were normalized for preprocessing 

to a [0, 1] range using min-max scaling to account for varying scales. To streamline analysis, the 

variables were categorized into four groups—cement and water content (cement, water, silica fume, w/b 

ratio), aggregate content (fine and coarse aggregates), superplasticizer dosage, and fiber volume 

fraction. Composite features were generated for each group to reduce input dimensionality and enhance 

model efficiency, particularly for the Adaptive Neuro-Fuzzy Inference System (ANFIS). Finally, the 

dataset was split into training and testing subsets to evaluate model performance, with the training set 

used for model development and the testing set reserved for validation. 

𝑧𝑖 =
di−min(d)

max(𝑑)−min(𝑑)
         (1) 
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where 𝑑𝑖  represents the actual value, 𝑚𝑎𝑥(𝑑) and 𝑚𝑖𝑛(𝑑)are the maximum and minimum values of 

each feature. 

2.4 Compressive Strength  

The ML algorithm described in this passage is designed to ascertain the compressive strength of HP-

SFRC by looking at eight factors. Unlike traditional methods like multiple linear regression, ML can 

analyze linear and non-linear relationships between data, allowing for easier physical interpretation 

[22]. It is also noted that ML has a higher testing accuracy than traditional methods. Additionally, it can 

store complex relationships between strength properties and mix design for HP-SFRC, which can be 

revised with newly acquired data. Consequently, the aim is to figure out the compressive strength of 

HP-SFRC by considering the mixed ingredients and quantities. Limiting the number of ML inputs is 

necessary to avoid a situation where the parameters to be learned are more than the number of training 

samples [23]. To accomplish this input-number control, the 8 elements (i.e., the attributes seen in 

Figure 1) are categorized into 4 groups. These attributes are normalized into the 0 to 1 range and added 

up in each group to obtain the cement and water feature, the aggregate feature, the superplasticizer 

content, and the fibre volume fraction, respectively. For instance, when calculating each concrete 

sample’s cement and water feature, each attribute (w/c ratio, cement, silica fume, and concrete water) 

is normalized into 0 to 1 following Equation (2). Subsequently, the normalized w/c ratio, cement, silica 

fume, and concrete water are combined as the cement and water feature. 

 

 

Figure 1: Determination of Compressive strength Using ML algorism 

      However, [24] employed similar data processing techniques and summarized the normalization 

process.  Cement, water, aggregate, superplasticizer content, and fibre volume fraction were used as the 

inputs for machine learning to estimate the compressive strength of the HP-SFRC. An ANFIS system 

has been selected to investigate a non-linear system since it has had numerous applications in this area. 

ANFIS uses a combined learning technique to determine how to adjust the weights to decrease the 

difference between the actual and predicted outputs, consequently controlling the parameters and 

assembly of the fuzzy inference system (FIS). ANFIS is a learning system that uses input-output values 

to map a model. After obtaining a set of parameters for the model, the model output for each pair of 

training data is compared to the measured values to calculate the discrepancy between the actual and 
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measured values. The model is finalised when the stopping criterion is reached [28]. For example, 

assume the FIS has two inputs, x and y, and one output, f. A typical set of two fuzzy "if-then" rules might 

look like this:  

Rule 1: if x is A1 and y is B1, then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1  

Rule 2: if x is A2 and y is B2, then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2       (2) 

 

where,𝐴𝑖 , 𝐵𝑖 Refer to the membership functions of the inputs and 𝑝𝑖,𝑞𝑖 , 𝑟𝑖 Are parameters which can be 

adjusted during the learning process. The architecture of ANFIS consists of layers and nodes; the square 

nodes, which are adaptable, hold the adjustable parameters, while the round nodes are fixed with 

certain functions, for example: 

Layer 1: In this layer, every node ⅈ is an adaptive node having a node function. 

         (3) 

Or  

         (4) 

Where   is the membership grade for input . The membership function could include Gaussian, 

Triangular, Trapezoidal, and Gbell membership. 

         (5) 

Where  are the premise parameters to be optimised using gradient descent? 

Layer 2: Every node in this layer is a fixed node, which multiplies the incoming signal and sends the 

product out given. 

        (6) 

Layer 3: This layer contains circular nodes, which compute the ratio of the firing strengths of the rules. 

          (7) 

Layer 4: Every node  in this layer is an adaptive node and performs the consequent of the rules. 

        (8) 

The parameters  are consequent parameters to be determined. 

Layer 5: The single node in this layer computes the overall output 

         (9) 

It is well known that Jang [25] combines two approaches, gradient descent and least squares, to alter 

the parameters of the first and fourth layers of the neural network. As the premise parameters remain 

constant, the output [26], [27] is obtained during the forward pass when the input vector is passed 

through the network, and the parameters are modified by the least squares method. The result can be 

written as: 
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      (10) 

where  and are the consequent parameters 

           (11) 

For invertible X Matrix 

           (12) 

Otherwise, pseudo-inverse is applied to obtain  

          (13) 

In the backward pass, the error propagates back through the network, and the premise parameters are 

optimized by gradient descent.  

         (14) 

where  is the learning epoch,  is the learning rate for   and is the number of input patterns. 

The parameters are updated using the expression 

        (15) 

The function is expressed as 

        (16) 

where  is the expected output and  depicts the fuzzy system output. 

 considering         (17) 

      (18) 

  , therefore,                (19) 

Hence, the gradient can now be expressed as: 

         (20) 
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Or 

       (21) 
 

3. Results and Discussion 

This section discusses the results for modeling compressive strength. The model pattern was designed 

with the MATLAB toolbox, which was utilized to accomplish this study. This model comprises four 

inputs, each associated with bell-shaped membership functions. Following a training epoch of one 

hundred trials, the ANFIS was tested by evaluating the testing data. This association generated sixteen 

if-then rules and one hundred-four parameters to be learned. Figure  2 illustrates the relationship 

between the predicted values and the actual compressive strengths for the training and testing datasets. 

The R2 is high for both, which indicates that the model is an accurate predictor of the compressive 

strength of concrete [29]. The root mean squared error (RMSE) between the actual and predicted values 

is 0.17 for the training data and 0.56 for the testing data. This further demonstrates the precision of the 

ML model. A multiple linear regression model was generated with the help of the XLSTAT software 

after studying a set of data that featured 8 parameters. The model (Eq. 23) had a coefficient of 

determination of 0.87 and was used to estimate the 28-day compressive strength of HP-SFRC. The 

multiple linear regression model can be expressed as: 

y=106.1751 - 65.9815 /cm + 0.06052 C - 0.0049 FA - 0.00782 CA + 0.21315 SF - 0.23387 W - 0.3603 

SP + 0.04146 Fiber with (R=0.982)         (23) 

 

 

Figure 2: Correlation between actual compressive strength and predicted compressive strength by the 

ANFIS (a) training data (b) testing data 

3.1 Mechanical Properties 
 
The study's results showed that incorporating steel fibres into HPC increased the compressive strength 

by about 12% when the fibre volume fraction was 1.5%. Compressive strengths of plain concrete with 

w/b ratios of 0.45, 0.40, and 0.35 were 58.4 MPa, 63.84 MPa, and 69.67 MPa, respectively. The 

compressive strength of HPC with a w/b ratio of 0.45 and a silica fume content of 19% increased by 

28.4% compared to the control samples. Increasing the content of supplementary cementitious 

materials (SCMs) such as micro-silica resulted in improved mechanical properties. The combined effect 

of silica fume and steel fibers on the compressive strength of HP-SFRC can be seen in Table 2 and Figure 

3. As the fibre volume fraction increased, the strength of the HP-SFRC also increased, as seen in Table 

3 and Figure 4. An empirical expression was developed to predict the compressive strength (f’cf) of HP-

SFRC as a function of fibre volume fraction, Vf (%), for a w/b ratio of 0.4, with an R2 of 0.9233, as 

shown in Figure 5. This trend was observed to be similar for other HP-SFRCs. 
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Figure 3: Effect of fibre reinforcing index (RI) on compressive strength of HPSFRC (5% micro silica 

replacement) 

      The stress-strained behavior of HP-SFRC with a w/b ratio of 0.45 and an SF content of 10% was 

looked into. The stress-strain relationship of concrete usually features two components - an increasing 

part up to the peak stress and then a declining part that shows cracking and softening. The main 

parameters typically used to describe the ascending branch of the curve are the initial tangent modulus, 

the compressive strength (peak value) and the strain at peak stress. Figure 4 portrays the typical stress-

strain (σ–ε) curves for HPC (plain) and SFRC. It can be noted from the stress-strain curves generated 

in this study that an increase in concrete strength leads to a more curved ascending branch and a steeper 

drop in the descending part for HPC, and a gradually flatter descent for SFRC. The post-peak region of 

SFRC shows a gradual decline. However, it still exhibits residual stress even at a strain of 0.015. Fibres’ 

pull-out and fibre bond effects play a prominent role in the post-peak stress-strain behavior of SFRC, 

and this impact is improved with the addition of SCM due to its strength and filler properties. HP-SFRC 

compressive toughness is improved as the maximum load is postponed after the peak load because of 

the bond between fibres and matrix. The post-peak strain values suggest that ductility can be augmented 

by including fibres in the mix. From the stress-strain curve, it is seen that an increase in the volume 

fraction of fibers or RI leads to a larger area under the curve, creating a longer-lasting descending part 

and higher toughness and ductility as exemplified by the post-peak stress-strain behavior of SFRC. 



Techno-computing Journal (2025)  
 Daha S. Aliyu et al.  

 

35 
 

 

Figure 4: Stress-strain curves for HPC and steel fibre reinforced concrete (w/cm = 0.45, SF content = 

5%). 

      Adding steel fibres (Vf = 1.5% or RI = 3.88) to High-Performance Concrete (HPC) was seen to cause 

a 37% rise in flexural tensile strength, a key indicator of a notable increase in strength and is related to 

the fibre pull-out effect. During the testing of prism specimens, the failure state was prolonged after the 

ultimate load, suggesting a significant rise in both ductility and flexural toughness of HP-SFRC. This is 

in line with the outcomes of previous research studies [30], [31], [32].  

 

Figure 5: Effect of fibre volume fraction on compressive strength of HPSFRC (w/cm = 0.40) 

Table 2: Mix proportion design of HPFRC 

Mix w/b FA 

(kg) 

CA 

(kg) 

SF 

(kg) 

B(kg) W(kg) SP 

(%) 

SF Vf (%) 

M1 

M1 

M1 

M1 

M1* 

0.45 

0.45 

0.45 

0.45 

0.45 

640 

638 

625 

622 

640 

1090 

1087 

1079 

1075 

1090 

44.5 

44.5 

44.5 

44.5 

67.4 

435 

435 

435 

435 

435 

196 

196 

196 

196 

196 

1.65 

1.65 
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1.65 

1.65 
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M2 

M2 

M2 

M2 

M2* 

M3 

M3 

M3 

M3 

M3* 

0.40 

0.40 

0.40 

0.40 

0.40 

0.35 

0.35 

0.35 

0.35 

0.35 

636 

627 

625 

623 

636 

611 

603 

595 

587 

635 

1090 

1086 

1084 

1073 

1090 

1090 

1077 

1073 

1068 

1068 

49.7 

49.7 

49.7 

49.7 

74.9 

56 

56 

56 

56 

56 

483 

483 

483 

483 

483 

547 

547 

547 

547 

547 

193 

193 

193 

193 

193 

191 

191 

191 

191 

191 

2 

2 

2 

2 

2 

2.7 

2.7 

2.7 

2.7 

2.7 

0 

0.5 

1.0 

1.5 

0 

0 

0.5 

1.0 

1.5 

0 
*M1 to M3 and M1 to M3 are Silica fume replacements at 10% and 15%, respectively, SP (%) Superplasticizer in percentage by the weight of binder material, Vf (%) is the steel fiber in the percentage of the 

total volume of concrete. 

 

Table 3: Mechanical properties result of HPSFRC of fibre =80 

  

Steel fibre 

Mix w/b Vf RI f’cf 

(Mpa) 

M1 0.45 0 0 53.56 

M1 0.45 0.5 1.39 55.77 

M1 0.45 1 2.68 57.01 

M1 0.45 1.5 3.98 58.4 

M2 0.40 0 0 56.85 

M2 0.40 0.5 1.39 60.65 

M2 0.40 1 2.68 63.05 

M2 0.40 1.5 3.98 63.84 

M3 0.35 0 0 64.86 

M3 0.35 0.5 1.39 68.12 

M3 0.35 1 2.68 69.91 

M3 0.35 1.5 3.98 69.67 

M1* 0.45 0 0 57.7 

M1* 0.45 1 2.68 62.21 

M1* 0.45 1.5 3.98 62.17 

M2* 0.40 0 0 60.42 

M2* 0.40 1 2.68 64.41 

M2* 0.40 1.5 3.98 65.59 

M3* 0.35 0 0 65.28 

M3* 0.35 1 2.68 71.04 

M3* 0.35 1.5 3.98 73.12 
*Fibre reinforcing index (RI) = wf *(l/d) and average density of HSFRC = 2425 kg/m.3, Weight fraction (wf) = (density of fibre/density of fibrous concrete) *Vf.  

Aspect ratio = (l/d); f’cf = 150 Ø x 300 mm cylinder compressive strength of HPSFRC (MPa).  

 

3.2 Compressive Strength Ratio and Fibre Volume Fraction (%) 

The graph in Figure 6 demonstrates a linear relationship between the compressive strength ratio of 

high-performance steel fiber-reinforced concrete (HP-SFRC) and the fibre volume fraction (Vf, %). 

Empirical equations were generated to predict the strength ratio (f’cf/f’c) of HP-SFRC with a w/b ratio 

of 0.35-0.45, with a high degree of accuracy (R2 = 0.8699). These equations were obtained using 

regression analysis using the least-squares method. 

f’cf/f’c = 1+ 0.067Vf         (24) 

      The coefficient of determination, R2 = 0.8699, measures how much of the variation in compressive 

strength of high-performance concrete (HPC) and high-performance steel fibre-reinforced concrete 

(HP-SFRC) is explained by the reinforcement parameter, which includes the sample size and a number 
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of independent variables. Specifically, it is determined that 84% of the variation in strength can be 

attributed to the fibre volume fraction. 

where f’c = compressive strength of HPC (Mpa), f’cf = compressive strength of HP-SFRC (Mpa) and Vf 

= fibre volume fraction, %. 

 

Figure 6: HPSFRC Vs Fiber volume fraction compressive strength ratios, Vf (%) 

      Equation (24) was expanded to analyze the compressive strength of HP-SFRC (f’cf), with the second 

term representing the contribution of the matrix strength-fibre interaction, which relies on the fibre 

bond and pull-out characteristics within the matrix. The proposed model was tested on cylinder 

specimens of HP-SFRC with a fibre aspect ratio (l/d) of 40 (RI = 0 - 2.10), resulting in an average 

absolute variation of 0.36%. The results of the correlation coefficient (R) and the integral absolute error 

(IAE) were determined to be 0.92 and 0.97, respectively. The predicted values are documented in Table 

4. 

Table 4: Compressive strength of HPSFRC and absolute variation by the model of (Eq. (1)) - aspect ratio of 

fibre (l/d) = 40. 

Mix 

design 

w/b Steel fibre 

content 

Compressive strength 

(Mpa) 

Absolute % 

error 

    Vf (%) RI Experimental Predicted   

M2 0.4 0 0 56.85 56.74 0.11 

M2 0.4 0.5 1.39 60.65 60.84 0.19 

M2 0.4 1 2.68 63.05 63.34 0.29 

M2 0.4 1.5 3.98 63.84 64.47 0.63 

M2* 0.4 0 0 60.42 60.73 0.31 

M2* 0.4 1 2.68 64.41 64.86 0.45 

M2* 0.4 1.5 3.98 65.59 66.1 0.51 

 

3.3 Numerical Simulation of Strength 

This research conducted a numerical simulation to examine the correlation between the mixture 

proportions and 28-day compressive strength of HP-SFRC containing micro-silica. The analysis used 8 

input elements to assess the compressive strength of HPFRC. The results of the statistical analysis of 

the data collected from published information are presented in this section. The authors gathered data 

from 40 different sources to assess the accuracy of the strength model for high-performance concrete 

(HPC) and high-performance steel fiber-reinforced concrete (HP-SFRC). A total of 250 mixtures from 

the research studies were assessed. Some samples were removed due to their large aggregate size, 
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special curing conditions, and other factors not pertinent to the current research. Consequently, a data 

set of 241 records, each with eight distinct variables, was compiled from the experimental research of 

this study and Liao et al. [31], [33], [34], [35]. The ranges of components of the data set can be seen in 

Table 5. 

Table 5: Range of data set for HPFRC 

Component  Minimum Maximum 

Cement (kg) 385.3 679 

Coarse aggregate 903 1295 

Fine aggregate 365 902 

Water (kg) 119.2 221 

Water/binder ratio 0.35 0.45 

Superplasticizer (kg) 0 30.08 

Fibre volume fraction 0 0.02 

Fibre (kg) 0 120 

Compr. strength (MPa) 43.6 100 

 

3.4 Comparison of ANFIS vs MLR Model 

This study comprehensively compares the performance of ANFIS and MLR models in 

predicting the HP-SFRC. ANFIS outperformed MLR in both the training and testing phases, 

achieving R² values of 0.92 and 0.87, respectively, indicating strong learning and 

generalization capabilities. In contrast, MLR achieved slightly lower R² values of 0.87 

(training) and 0.82 (testing), reflecting its limited ability to capture nonlinear interactions. 

ANFIS also yielded lower RMSE values, 0.17 for training and 0.56 for testing, compared to 

MLR’s 0.22 and 0.63, confirming higher prediction precision. The key advantage of ANFIS 

lies in its ability to model complex, nonlinear relationships, such as the combined influence of 

steel fiber content, water-to-binder ratio, and superplasticizer dosage, with the Sugeno fuzzy 

inference system dynamically adjusting rules during training. For example, ANFIS effectively 

captured the nonlinear effect of increasing steel fiber volume fraction (Vf) on compressive 

strength, unlike MLR, which assumes linearity and struggles with nonlinear trends such as 

those observed with silica fume content. From a practical standpoint, ANFIS is more accurate 

and suitable for advanced HP-SFRC mix designs. At the same time, MLR remains useful for 

preliminary evaluations due to its simplicity and lower computational demand. ANFIS involves 

104 adjustable parameters, enhancing its modeling flexibility but requiring more significant 

computational effort, whereas MLR uses only 8 parameters, offering efficiency at the expense 

of accuracy. Graphical evaluations showed that ANFIS predictions closely matched actual 

values with minimal scatter, and 3D surface plots (Figure 7) illustrated interactive effects e.g., 

a 12% strength increase with steel fiber addition. A parametric study confirmed that steel fibers, 

alongside silica fume, significantly enhance compressive strength. Empirical equations 

developed using ANFIS achieved an IAE value of 0.92 and were applicable across varying w/b 

ratios. In conclusion, integrating steel fibers and silica fume improves HP-SFRC’s compressive 

strength, and ANFIS is a robust predictive tool. It is recommended that ANFIS be used for 

high-precision applications and MLR for basic assessments, with future research encouraged 

to develop hybrid models that combine the strengths of both approaches. 
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Table 6: Comparison of ANFIS and MLR Models  

Model Training 
Accuracy 

(R²) 

Testing 
Accuracy 

(R²) 

Root Mean 
Squared 

Error 
(RMSE) 

Number of 
Parameters 

Key Observations 

ANFIS 0.92 0.87 0.17 
(Training), 
0.56 
(Testing) 

104 It is highly accurate in training 
and testing because it can model 
nonlinear and interactive 
relationships among input 
variables. It also provides 
insights into the influence of 
individual parameters on 
compressive strength. 

Multiple 
Linear 
Regression 

0.87 0.82 0.22 
(Training), 
0.63 
(Testing) 

8 It performs adequately for linear 
relationships but struggles to 
capture the intricate nonlinear 
effects of variables like fiber 
volume fraction or 
superplasticizer dosage on 
compressive strength. 

 

 

Figure 7: 3D surface plot for HP-SFRC 
 

4. Conclusion  

Based on the experimental and numerical investigation of high-performance steel fiber-reinforced 

concrete (HP-SFRC) incorporating micro-silica as a supplementary cementitious material (SCM), it was 

concluded that the inclusion of steel fibers moderately enhances compressive strength while increasing 

the silica fume (SF) replacement further improves the mechanical performance of the concrete matrix. 

Empirical equations were developed to predict compressive strength as a function of fiber volume 

fraction, achieving an impressive index of agreement (IAE) value of 0.92. These equations are 

independent of specific specimen parameters, utilize non-dimensional variables, and are applicable 

across a broad range of water-to-binder (w/b) ratios. Additionally, a robust machine learning 

framework based on an Adaptive Neuro-Fuzzy Inference System (ANFIS) was developed and trained 

on the dataset, successfully predicting the compressive strength of HP-SFRC with high accuracy, 

evidenced by RMSE values of 0.17 for training and 0.56 for testing. Based on the outcomes of this study, 

it is recommended to use ANFIS for high-accuracy predictions, particularly in advanced HP-SFRC mix 

designs where precise control over mechanical properties is essential. MLR, while less accurate, is 

suitable for simpler, preliminary analyses or when computational resources are limited. Future research 

is encouraged to explore hybrid modeling approaches that integrate the computational efficiency of 
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MLR with the nonlinear modeling capabilities of ANFIS to develop more balanced and scalable 

prediction tools. 
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