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1. Introduction 

The construction industry has continued to rely on mortar as one of the most widely employed 

composite materials used in building and restoration constructions. Mortar primarily consists of 

cement, sand, and water and is crucial in building structures, plastering, and masonry construction. 

Despite its importance, Mortar is still linked with structural failures, mainly low compressive strength, 

and brittle behavior under tensile stress [1]. Over the years, fiber reinforcement has become a practical 

approach to enhance the mechanical characteristics of mortar, and it modifies cracking behavior and 

brittleness problems [2]. Some of the reinforced fibers commonly used in construction include synthetic 

fibers, fiberglass, steel, and natural fibers, which all can enhance the characteristics of mortar [3]. Over 

the recent decades, awareness of products' environmental impacts has directed focus towards the 

recycling of textile fibers, which provides not only environmental advantages but also architectural 
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advantages when the fibers are integrated into construction materials. Natural fibers are highly 

available and have the least negative effects on the environment and are preferable for enhancing brittle 

construction materials like mortar [4]. Moreover, considering the contribution to waste minimization 

and carbon footprint reduction, recycled textile fibers can also be included in the mortar products 

utilized in construction projects. Textile fiber waste was classified into three types: production waste, 

pre-consumer waste, and post-consumer waste, with post-consumer waste contributing the most 

significant waste stream [5]. Textile waste is either disposed of by landfilling, incineration, or converted 

to energy; all these methods pollute the environment by emitting methane and carbon dioxide, resulting 

in soil, air, and water pollution [6] [7].       

      Population growth and rising living standards have led to a rapid increase in fiber production and 

fiber waste. Though attempts have been made to recycle fibers for various applications, a large 

percentage of fiber waste is still dumped in municipal landfills due to problems associated with 

collection and classification [8] [9]. This problem has been worsened by fast fashion and increased 

textile production, highlighting the importance of a circular economy that focuses on upcycling to 

increase the value of products in the recycling process [10]. On the other hand, [11] emphasized that 

materials with lightweight, flexible, and corrosion resistances, such as biopolymer insulators and 

composites, offer significant advantages and are increasingly gaining attention. Thus, these materials 

produced from recycled fiber may be sustainable products for use in construction-related industries. 

Incorporating textile fiber reinforcement materials enhances mortar strength, durability, flexibility, and 

thermal insulation compared to conventional methods. Reusing fibers in construction is crucial due to 

mechanical properties and durability enhancement [12]. It also increases the ability to mitigate 

processes i.e. shrinkage, expansion, and others that cause crack formation [4] and overall durability 

[13]. Studies such as [14] employed recycled glass fibers and [15] on reinforced fabric for concrete 

panels. [16] Show mechanical enhancements by utilizing plastic waste. [17] identified acrylic fiber 

as comparable to polypropylene fiber and [18] established strength advances with 

polypropylene/polyethylene PP/PE blends. Similarly, cellulose fibers [19] and recycled nylon from 

fishing nets [20] also proved efficient, while [21] confirmed the uses of natural hemp fibers for lime-

based mortars.   

      The use of artificial intelligence AI models for flexural strength prediction is important as it helps to 

estimate the optimal fiber compositions to yield maximum mechanical performance. Prior work has 

shown the potential of AI in predicting material properties with great precision, even in nonlinear 

systems [22]. Considering these developments, this research presents a novel application of AI models 

to evaluate the influence of fabric fiber on mortar compressive strength, highlighting the potential for 

sustainable construction through the reuse of textile waste. The research aims to leverage AI techniques 

to predict the effects of fabric fiber on the compressive strength of a mortar made with Portland cement 

(PC). AI models, including Artificial Neural Networks (ANN), Support Vector Machine (SVM), and 

Stepwise Wise Regression (SWR), are employed to assess how fabric fiber influences the mechanical 

performance of mortar. The discoveries from this study will give helpful information concerning the 

viability of reusing textile fiber in construction and the improvements that can be made to mortar by 

utilizing green materials in response to sustainable development and reduction of waste. 

2. Material and Methods  

2.1 Materials 

This chapter discusses the material used in this research work and provides details of various tests to 

investigate the properties of cement mortar reinforced with fabric fiber. The cement used for the 

experiment was Grade 42.5R, and natural sand obtained from the river was used. Ordinary tap water 

was used throughout the experiment, with a water-cement ratio of 1:2 as specified by BS158. The fiber 

used in the experiment was a textile fiber containing a percentage of cotton content obtained from 

fashion design waste. The fabrics were shredded into pieces with an average fiber length of 6cm, a depth 

of 0.5 mm, and a density of 52.4 Kg/m2. The fiber was added to the mortar mix as a percentage of the 

cement weight. 
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2.2 Methods 

2.2.1 Preliminary Tests on Samples 

Preliminary tests were conducted to determine the properties of the materials to be used. The following 

tests were performed on the cement: specific gravity, fineness, and compressive strength. For the fine 

aggregates, tests included the particle size distribution, specific gravity, and clay and silt content, while 

consistency, soundness, and setting time were performed on the aggregates. The particle size 

distribution of the sand ranged from 0.08 mm to 2.0mm per EN 196-1. The cement to be tested was 

stored in sealed, air-tight containers made from material that does not react with cement, and the water 

used for the research was free from salt and other impurities. 

2.2.2 Sample Preparation 

The mortar used for this experiment has a mix ratio of 1:3 per BS158. The dry mortar was initially 

prepared by mixing one part of cement with three parts of sand, and the components were thoroughly 

mixed. Fabric fiber was added at varying mix ratios of 0%, 0.5%, 1.0%, and 2.0%. After thoroughly 

mixing the constituents, water was added and mixed to produce the cement mortar.  Each batch of three 

test specimens was mixed separately and consisted of 450 ± 2g of cement, 1350 ± 5g of sand, and 225 

± 1g of water, in which the specimen was molded immediately after the preparation of the mortar. 

During molding, the excess mortar was struck off with the metal straightedge held almost vertically and 

moved slowly with a transverse sawing motion. The specimens were smoothed using the same 

straightedge held nearly flat, and the molds were then marked to identify the specimens. The specimen 

was then cured by placing the molds on a horizontal base in the moist air room for 24 hours. Afterward, 

the specimens were demolded, marked with water resistance ink, and submerged horizontally. The 

molds were kept apart to allow free access to water on all six sides of each specimen, with space between 

the specimens and a depth above the upper faces of at least 5mm. Before testing, each specimen was 

removed from the water and allowed to sit for about 15 minutes. before the test was carried out. A total 

of 45 cubes were cast. Nine samples were cast for each fiber replacement level to ensure the accuracy of 

the results, enabling analysis of the different levels of fiber replacement. Prismatic test specimens 

dimensioned 40 mm x 40 mm x 160mm were used in determining both Compressive stress and flexural 

strength. At the specified age, the specimens were removed from wet storage, broken in flexure into two 

halves, and each half was tested for compressive strength. 

 

2.2.3 Flexural Strength Test 
The prism was placed in the testing machine (see Figure 1) with one side face on the supporting rollers 

with its longitudinal axis normal to the supports. The distance between the supports is 100 mm ±0.5 

mm. The load was applied vertically using the loading roller to the opposite side face of the prism and 

increased smoothly at a rate of 50 ±10 N/s until fracture. The flexural strength Rf was calculated using 

the relation: 

 

Rf =
1.5 ×𝐹𝑓×𝑙

𝑏3
                                              (1) 

Rf is the flexural strength in megapascals; b is the side of the square section of the prism in millimeters; 

Ff is the load applied to the middle of the prism at fracture in newtons; l is the distance between the 

supports in millimeters. 
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 Figure 1:  Mortar prism (40mm × 40mm × 160mm) 

2.2.4 Compressive Strength  

The prism halves (after the test of flexural strength) are tested in compression, and the prism halves are 

laterally centered on the auxiliary platens of hard steel, which exactly determines the compressive area 

(because the prism halves have an irregular form). The platens size is 40 mm x 40 mm and 10 mm thick 

per EN 196-1. While loading, the relative attitude of the upper and lower platens remained fixed, and 

the resultant forces passed through the center of the specimen. The load increased smoothly at the rate 

of 2400 ± 200 N/s over the entire load application until failure. The Compressive strength was 

calculated from the relation: 

 

Rc= 
Fc

1600
                                                                            (2) 

 

where Rc is compressive strength (MPa), Fc is the maximum load at fracture (N), and 1600 is the area 

of the platens (mm2). The test result was defined as the arithmetic mean of the six compressive strength 

determinations made on a set of three prisms. If any result among the six determinations varies by more 

than ±It was discarded 10 % from the mean, and the mean of the five remaining results was calculated. 

If any further result within these five determinations varied by more than ±10 % from their mean, the 

results test was discarded. 

 

2.3 Model Building  

2.3.1 Artificial Neural Network (ANN) 

ANN is a computational model that imitates how the human brain processes information. It consists of 

interconnected nodes, called neurons, organized into layers, which include an input layer, hidden 

layers, and an output layer [23], as in Figure 2. The neurons in each layer are connected to neurons in 

the subsequent layer over weighted links. Throughout the forward, during which the network is trained, 

the input data is used to pass via all the layers, where each connection has an associated weight and 

bias. However, the neurons combine the input values with these weights and biases and then apply an 

activation function to introduce non-linearity, allowing the model to learn from complex patterns [24]. 

ANN is meant to reveal patterns, learn from the data, and make excellent estimations. They are used in 

different applications that involve the classification of images and speech recognition. The information 

generated by the ANN is passed to the next layer after being processed by the first layer [25]. 
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Figure 2: ANN model structure 

2.3.2 Support Vector Regression (SVR) 

SVM is a classification technique Vapnik uses to solve nonlinear problems. SVR is a generalization of 

SVM that effectively solves any problem concerning regression with a multi-dimensional landscape 

[26]. However, SVR is among the supervised ML algorithms that predict distinct ideals. The main idea 

of the SVR is to look for a regression plane in which the actual distance of all points of the data set will 

be minimized (Figure 3). SVM has robustness outliers with excellent performance and the ability to 

learn from complex patterns [27]. SVR is an application of SVM in any problem concerning regression. 

Related to GPR, ANN can take care of nonlinear regression issues more often with the advantage of 

getting better analysis in different fields. Yet, the SVM model gives precise estimation strength and 

is easy to put into work rather than optimal results. SVM accepts the main concept of the enticement 

zone, to which a margin is distinct to take care of the estimation point. The main application of 

the regression model is called SVR. The regression analysis constructs a hyperplane in the higher space 

such that the distance from all data points to the hyperplane is minimized, thereby improving 

the accuracy of predictions for the validation set [28]. 

 

Figure 3: SVR model structure 

2.3.3 Stepwise Linear Regression (SWR) 

The SWR Model is not a single method but a multiple regression analysis technique. SWR is one of the 

most reliable statistical and mathematical techniques in the research domain, and it is used to sort out 

and analyze dependencies quantitatively among dependent and independent variables. Regression 

methods are used to study the interdependence of multiple variables. SWR is used to reveal the ideal or 
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most appropriate regression model to study the interdependence of variables with more insight. SWR 

can mix and delete one variable at a time, which is the most favorable technique. The SWR independent 

variable adds the regression equations one at a time based on their influence on the dependent 

variables. SWR minimizes the dependent variables by using two procedures: advancing and backward 

algorithms [29]. SWR is used to remove initial regression models based on their statistical relevance in 

explaining the response variables in many steps. However, it can take care of nonlinear functions of the 

main features. SWR is a technique used to contract a model by adding or eliminating interpreter 

variables under the state [30]. 

2.4 Model Development   

The study utilized FFNN, SVM, and the SWR model. All these models were created in MATLAB. In data-

driven models, the main goal is to fit the model to the provided data, using relevant indicators to ensure 

accurate predictions on unseen data sets [31]. Overfitting causes significant ML issues in training and 

testing performance. To overcome this problem, k-fold cross-validation was performed. In this 

approach, the data was split into two transitions, i.e., training and testing. The process is advantageous 

as a result of validation and training sets are nonaligned in each iteration [32], [33], this provides a solid 

foundation for optimizing model performance. The data in this research was divided into 70% for 

training and 30% for testing using 10-fold cross-validation. A conventional sensitivity analysis 

was conducted with a correlation matrix to identify highly influential and suitable predictor 

combinations with the target variable. This matrix reveals the attribute of the linear combinations 

among the variables and helps to develop model combinations. The input and the target variables were 

normalized using Equation 1 before the values employed AI-based models.  

𝑋𝑖 = (
𝑋𝑖 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
)                                            (3) 

2.5 Criteria for Evaluating Performance Predictions 

Using the collected data, the results of the analyzed methodologies can be compared with the expected 

outcomes. To assess model performance, the coefficient of determination (R2), the mean squared error 

(MSE), and the root mean squared error (RMSE) were applied in this study. Two accuracy measures 

are used which are R2, which indicates the percentage of total variance that the model accounts for, and 

RMSE, which measures the remaining unseen variance that the model cannot account for [34] [35] 

[36]. The data in this research was divided into 70% for training and 30% for testing.  

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑋𝑃,𝑖 −  𝑋𝐴,𝑖)2𝑁

𝑖=1                                        (4)         

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑋𝑃,𝑖 −  𝑋𝐴,𝑖)2𝑁

𝑖=1                  (5)             

 

R2 = 1 − [
∑ (𝑋𝑃,𝑖− 𝑋𝐴,𝑖)2𝑛

𝑖=1

∑ ( 𝑋𝐴,𝑖− 𝑋′𝐴,𝑖 )2𝑛
𝑖=1

]                                        (6) 

                         

R = √1 − [
∑ (𝑋𝑃,𝑖− 𝑋𝐴,𝑖)2𝑛

𝑖=1

∑ ( 𝑋𝐴,𝑖− 𝑋′𝐴,𝑖 )2𝑛
𝑖=1

]                                            (7) 

 

Whereas; 𝑋𝐴,𝑖 donates the actual data values, 𝑋′𝐴,𝑖 stands for an average rate of the data and 𝑋𝑃,𝑖  stands 

for the predicted values for n data input. 
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3. Results and Discussion 

3.1 Experimental Results 

Figure 4 illustrates the mean compressive strength (MPa) of the mortar samples with distinct 

percentages of fiber used (0%, 0.5%, 1%, 1.5%, and 2%) at the curing times of 7, 14, and 28 days. As 

shown, the compressive strength increases with time and has the highest magnitude at 28 days for all 

percentages of fibers. Plain mortar with no added fiber has consistent values rising to 6 MPa at 28 days. 

The mix with a fiber content of 0.5% and 1 % has comparable strength to the plain mix, and an increase 

in fiber percentage leads to a decrease in compressive strength at all tested intervals for 1.5 % and 2 % 

fiber contents. Significantly, 0.5% fiber performs slightly better in 14 days, while it gives poor results at 

7 and 28 days compared to the plain sample.  The optimal balance seems to be at 1% fiber, as it provides 

good compressive strength without significantly weakening the mortar. At 1.5% and 2%, strength 

reduction could be attributed to inadequate bonding or barriers that may interrupt the flow of the 

cement matrix, thereby reducing compactness. Whereas the literature affirms that fibers commonly 

contribute to tensile strength and crack resistance, they may also reduce compressive strength. 

Therefore, it is suggested that the fiber content should be limited to 1% for applications where 

compressive strength improvement is required. Higher fiber percentages, on the other hand, may be 

desirable where crack resistance or flexibility is of greater importance than compressive strength. 

 

3.2 AI Prediction-Based Results 

The input and the target variables were normalized using Equation 3 before the values employed AI-

based models. The normalization range between 0 and 1 was adopted since certain data have high values 

and can yield wrong results in modeling [37]. The main aim of normalization is to reduce redundancy 

and to guarantee that all data is scaled equally [38]. As such, the comprehensive quality and 

standardization of the data are maintained. Considering the correlation results in Figure 6, model one 

includes two input variables: normal load and flexural load. Flexural strength and mortar age were 

added to develop the second model, resulting in four input variables. whereas fiber content and density 

were added to create the inputs for the third model, the compressive strength was predicted as the target 

variable. As illustrated in Figure 5, the significant variables that are stationary and have a Probability 

below 0.05 (P<0.05) demonstrate a strong linear correlation [39]. Furthermore, the negative 

correlation values indicate an inverse relationship among the variables [40]. The correlation matrix 

(Figure 5) shows the central cross relations between the model input and output properties. The 

significant variables have a Probability below 0.05 (P<0.05), indicating a strong linear correlation, 

and the negative correlation values indicate an inverse relationship among the variables. As shown in 

Figure 5, compressive strength depends on normal load (0.9992) and moderately depends on flexural 

strength and flexural load (0.7505 and 0.7484, respectively). But fiber content reduces both the 

compressive and flexural strength, i.e., (-0.6709) and (-0.4533), respectively. Hence, it suggests that 

higher fiber content weakens mechanical strength. On the other hand, the analysis indicates moderate 

effects of curing age in compressive strength (r=0.4795) and normal load (r=0.4682) but shows weaker 

correlations with the remaining parameters. Hence, optimizing fiber content is essential for balancing 

strength and durability in mortar. 
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Figure 4: Mortar compressive strength development at various percentages 

 

Figure 5: Correlation Matrix of Prediction Parameters 

  

Table 1: Performance Metrics of FNN, SVM, AND SWR Models  

Models Training Phase Testing Phase 

R2 MSE R RMSE R2 MSE R RMSE 

FFNN-M1 0.9858 0.0011 0.9928 0.03320 0.99226 0.00043 0.99612 0.0207 

FFNN-M2 0.9990 7.36E-05 0.9995 0.00857 0.99044 0.00053 0.99521 0.0230 

FFNN-M3 0.9888 0.0008 0.9944 0.02944 0.98621 0.00076 0.99308 0.0276 

SVM-M1 0.9946 0.00042 0.9973 0.02049 0.99226 0.00043 0.99612 0.0207 
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SVM-M2 0.9948 0.00040 0.9974 0.02007 0.993 0.00038 0.99649 0.0197 

SVM-M3 0.9935 0.00049 0.9967 0.02234 0.99035 0.00053 0.99516 0.0231 

SWR-M1 0.9997 2.03E-05 0.9998 0.00450 0.99363 0.00035 0.99681 0.0188 

SWR-M2 0.9995 3.26E-5 0.9997 0.00571 0.99694 0.00017 0.99847 0.0130 

SWR-M3 0.9992 3.23E-05 0.9995 0.00558 0.99690 0.00015 0.99844 0.0122 

 

      Table 1 presents the performance comparison of several FFNN, SVM, and SWR models for predictive 

analysis of the cement mortar compressive strength containing fabric fiber made with PC. Through the 

training and testing phases, all the models showed precision in predicting the impacts of the fiber 

content on compressive strength determination. According to predictor performance analyses, SWR 

models yield R2 values of 0.9997 and 0.9969 in the training set of SWR-M1 and testing set of SWR-M2, 

respectively, indicating the models’ predictive capability between the variables. SVM models also show 

good performance, with SVM-M2 having an R2 of 0.993, showing that the models have good predictive 

performance. Compared to other models, the FFNN models, although precise, have a lower predictive 

ability than in FFNN-M3, with an R2 of 0.98621 and a higher RMSE of 0.0276. Overall, all the models 

presented the capability to estimate and enhance the strength characteristics of fiber-reinforced cement 

mortars, and the SWR models were identified as the most reliable tool. This insight is important for 

sustainable construction because accurate predictions can help to optimize fiber ratio for enhanced mix 

proportion, as proved by [41]. 

      The results of observed and predicted values depicting the model's goodness of fit are compared in 

the scatter plot, as shown in Figure 6. The graphs showed good predictive accuracy for the models, 

especially when considering the coefficient of determination since the R² of all the models for all 

categories is recommendable, especially for the SWR models with values close to one for the SWR-M2 

model. This suggests its advantage in identifying the independent variables that provide an optimal fit 

for the model. For both FFNN and SVM, a high R² value is observed also.  Although the SVM models 

have good fits, the spread between the observed and predicted values is slightly higher, indicating a 

lower fit than the FFNN and SWR models.  Concisely, the plots reveal that all models verify a strong fit 

with FFNN-M2, and the SWR-M2 has the highest accuracy. The results indicated that the employed 

models are ideal for simulating the complex relationships between the predictor variables' 

characteristics. Such minor variations between models may be due to parameter calibration or 

the intrinsic capability of the underlying algorithm to perform on a specific data set.   

      Figure 7 presents a radar plot that compares the R2 values for three AI models (FFNN, SVM, and 

SWR) in predicting the fabric fiber strength of cement mortar made with PC. FFNN and SWR 

demonstrate the highest accuracy with R2≈1 in training, and SWR has high values in testing, indicating 

excellent predictive performance. SVM also performs slightly lower than SWR and FFNN but is still 

predicted well. Overall, SWR is the best model, followed by FFNN and SVM. Figure 8 presents the 

RMSE in training and testing sets of various AI models used in this study. It is seen that the RMSE 

values identify the SWR models with the best fit having the lowest RMSE. However, the FFNN models 

(as FFNN-M3) display a greater RMSE on the testing data than on the training data, implying possible 

over-learning. whereas the SVM models demonstrate moderate RMSE between testing and training 

with less accuracy. The proposed SWR generally achieves the highest predictive accuracy, while the 

FFNN and SVM also have comparatively high prediction accuracy. The wide-ranging conclusions 

showed the usefulness of machine learning models, particularly for sustainable waste management in 

the construction industry. This analysis presents valuable information for selecting models to forecast 

the impact of fabric fiber strength on cement mortar characteristics. It also gives an insight into 

considering the model’s robustness apart from model accuracy when comparing different modeling 

approaches to ensure the suitability of the data structure and requirements in terms of the predictions. 
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Figure 6: Scatter plots for the FFNN, SVM, and SWR models 

 

 

Figure 7: Radar plots of the generated models 
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Figure 8: Error plots for the generated models 

4. Conclusion 

This paper establishes the efficiency of AI models, particularly FFNN, SVM, and SWR, in estimating the 

compressive strength of cement mortar with fabric fiber additives in different proportions (0.5%, 1%, 

1.5%, and 2%). The experimental analysis revealed that increasing fabric fiber content enhances some 

mortar properties, such as crack resistance while decreasing the compressive strength with high fabric 

fiber contents (1.5% and 2%). Among all the AI models analyzed SWR models provided the best 

efficiency in predictive accuracy with FFNN and SVM when compared to other AI models, with 

the SWR-M2 model having the best evaluation performance with the highest R² of 99.97% in the 

training phase and 99.67% in the testing phase, with minimum RMSE of 0.00571. Contrary to other 

models, it is the most suitable for capturing the complex relationship of mortar composition.  These 

results indicate that the AI models, especially the SWR model, can capture relationships of variable 

parameters in cement mortar composition. Also, the work shows the importance of the proper 

proportion of fiber to cement mortars for optimized durability and strength, as excess fiber reduces the 

compressive strength due to probable harmful interference with the cement matrix. In summary, this 

work laid the premise for integrating AI models to employ a sustainable construction approach, 

guiding the selection of fiber content for improved structural performance while offering insights for 

future applications in optimizing material compositions for specific construction needs. Moreover, 

Future research could evaluate long-term performance under different environmental conditions, and 

refining advanced AI models could offer valuable insights for optimizing cement-based materials in 

various construction scenarios. 
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