
(Received 16 Nov 2024; revised 04 Dec 2024; accepted 30 Dec 2024; first published online 23 July 2025); ©Techno-

computing Journal 2025. Journal homepage https://technocomputing.org/index.php/tecoj 

 

Techno-computing Journal 1(2) 1-17 (2025)       Research Paper 
https://doi.org/10.71170/tecoj.2025.1.2.1-17 

 

Keywords: Streamflow Prediction, Artificial Intelligence, Machine Learning, Gaussian Model, Kano 

State 
 

1. Introduction  

Reliable streamflow forecast plays a vital role in water resource planning and management. It provides 

critical information that can be used to avoid natural disasters, such as floods and droughts, and offers 

valuable insights for proper water allocation in a regime. Research has shown that the evolution of the 

hydrological cycle system is primarily influenced by the combined effects of weather, climate, ocean, 

and the underlying surface [1]. The complex nature of the water cycle results in streamflow with natural 
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features, including spatial and temporal distribution, as well as alternating periods of dryness and 

wetness. Moreover, scientific studies have demonstrated the complex nature of streamflow, which 

results from the interplay between natural variables such as non-linearity, randomness, and non-

stationarity [2]. 

     Despite all the challenges, researchers in the field of hydrology continue to conduct their studies to 

achieve a certain level of accuracy in streamflow prediction under various environmental conditions 

(Figure 1).  The dependence on streamflow prediction by water resources planners and decision-makers 

has continued to inform the design of sustainable hydraulic structures, improve effective monitoring 

systems, and optimize operations for the flood control system [3]. However, the literature shows that 

streamflow is modeled using two approaches: physical models, which employ partial differential 

equations, and data-driven models, which utilize artificial intelligence. It involves physical data 

collection, which tells information about the behavior of the river, while a data-driven model uses a 

regression method. The streamflow prediction by the conventional regression cannot be accurately 

achieved due to the ingrained non-linear interrelationship between input and output variables, which 

makes it a continuous scientific problem [3]. Concerning this, it has led to the development of AI 

models, as they are more reliable and non-linear tools for hydrological analysis. 

1.1 Research Background 

Studies on streamflow simulation have shown that classical regression tools are commonly used, despite 

being associated with a low degree of accuracy. This has led to the development of AI models that are 

accurately considered, as well as non-linear hydrologic tools. [2]. Studies have revealed that early AI 

models primarily focused on regression models, such as autoregressive moving average (ARMA), and 

linear regression models [1]. However, due to non-linearity behavior of streamflow, the mentioned 

regression models do not provide reliable forecasting accuracy, because of this reason numerous AI 

models were developed such as adaptive neuro-fuzzy inference system (ANFIS), artificial neural 

network (ANN), complementary wavelet-AI model, hybrid evolutionary computing model, and support 

vector machine (SVM) model [2]. Random forest (RF) and extreme learning machine (ELM) models 

have indicated the potential of streamflow prediction [1]. Moreover, the models have their 

shortcomings, which include time-consuming and non-automated modeling processes. Due to these 

reasons, it is necessary to conduct research that will enhance streamflow prediction accuracy. This could 

be achieved by augmenting and integrating two or more models. 

     The objective of this study is to employ four different machine learning models; ANN, GPR, SVM, 

and stepwise regression (SWR) to predict streamflow. The results of the models will be compared 

through three performance evaluations. While approaches such as ANN, SVM, GPR, and SWR have 

revolutionized streamflow forecasting, significant gaps remain, including a lack of comparative research 

on combining different methods into ensemble models to utilize their complementary capabilities and 

quantify uncertainty bounds. Furthermore, current studies are limited to specific regions, necessitating 

research into the transferability and generalizability of ensemble approaches across diverse 

hydrological conditions. Although promising, ensemble approaches often lack interpretability; 

therefore, enhancing clarity could increase confidence and acceptance. Finally, despite their potential, 

the operational deployment of ensemble forecasting into real-time decision support systems is 

restricted, emphasizing the need for frameworks that enable smooth integration and updating. In 

conclusion, deficiencies in comparative ensemble model assessment, uncertainty estimates, model 

generalization, interpretability, and real-time monitoring necessitate further study to fully realize the 

benefits of ensemble methodologies for streamflow forecasting and water management. 
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Figure 1: The terminology most frequently used in the literature on streamflow prediction employing 

machine learning models. 

 

2. Literature Review 

An essential component of ensuring sustainable management and use of water resources is the accurate 

runoff forecasts. In situations where it is impossible to get the underlying physical link directly, artificial 

intelligence techniques can open new possibilities for runoff prediction. The estimation of streamflow 

has been improved in numerous ways due to the advancement of AI, making the process easier and 

more accurate. The AI has improved the analysis of streamflow by automating data processing, 

developing accurate predictive models, integrating diverse data sources, and enabling real-time 

monitoring and decision support. These advancements have made streamflow estimation more 

efficient, reliable, and accessible, thereby assisting in water resource management, flood forecasting, 

and ecosystem monitoring. Nevertheless, there are limited reports that have assessed the performance 

of different AI techniques in predicting daily time series of streamflow for sustainable water resource 

management. Below is a glance at the study that forecasts various aspects of water resources. 

     To forecast the daily and monthly streamflow, Cheng et al. [4] employed two AI models, namely Long 

Short-Term Memory (LSTM) & ANN, to predict the streamflow at Nan River Basin, Thailand, within 

the 1974 to 2014 period. The models were trained and validated using rainfall-runoff datasets collected 

at the study area. In a China case study, Niu and Feng, [5] employed five AI-based models (ANN, ELM, 

GPR, SVM, and ANFIS) to predict the daily streamflow. Four statistical indices were used to anticipate 

performance accuracy during the study for the performance evaluation metric. The research indicates 

that the AI-based model achieves satisfactory forecasting outcomes in the study area. In conclusion, the 

outcomes depict that three of the AI-based models outperform the other two models in terms of 

accuracy. In another case study of Algeria, Aichouri et al. [6] employed an ANN to predict the 

relationship between rainfall-runoff in semiarid and Mediterranean climates. The model proves to be a 

promising method for predicting flow to the study region. The research revealed that the model is a 

sufficient tool for anticipating rainfall-runoff relations. 

     In another study, downstream of Agra City. Abba et al. [7] employed three AI models (MLR, ANN, 

and ANFIS) to anticipate water resource problems, which enabled the calculation of oxygen 

concentration dissolution upstream, in the middle stream, and downstream. Afterwards, the study 

indicates that the ANN model is marginally better than ANFIS in use and has shown a significant 

advantage over the MLR model, in a case study of the Palla station of the Yamuna River, India. Gaya et 
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al. [8] employed several AI models to estimate the water quality index, presenting the MLR model as a 

suitable approach for determining water quality. This study found that other classical models are the 

most reliable for forecasting, based on the research results, which indicates a high improvement in the 

accuracy of ANN and ANFIS models over MLR when evaluating the accuracy and goodness of fit (GOF) 

of the models using MSE, RMSE, and the Coefficient of Determination (R-squared). The study shows 

that the precision between the two models is negligible, indicating that both models are reliable for the 

case study estimation, with minimal impact on accuracy performance. 

   However, Ali and Shahbaz [9] employed an ANN to determine the actual prediction of streamflow, 

which aids in water resources planning and management, including irrigation systems, hydropower 

plants, flood hazards, and dam control. The accuracy of the model was evaluated using four different 

performance metrics: RMSE, R-squared, correlation coefficient (R), and Nash–Sutcliffe efficiency 

(NSE). However, the study proves that ANN is an effective tool for solving hydrological problems. In 

Albert River, Queensland, Australia, Yaseen et al. [10] utilized an ENN to detect hourly river flows for 

flood forecasting and risk management of adverse events. The ENN model displayed outstanding 

performance in terms of accuracy, unlike the other model. The results clearly describe the application 

of the ENN model as a promising AI technique for accurate performance in real-time. In the United 

States study. Parisouj et al.  [11] Employed three AI-Models (Artificial neural network with 

backpropagation (ANN-BP), support vector regression (SVR), and ELM) to estimate the significant role 

of streamflow in water resources. The feature selection method of recursive feature elimination (RFE) 

for support vector machines (SVM) was employed to select the most suitable predictor variable. The 

performance of the developed model was measured using selected statistics. The findings reveal that 

the SVR model yielded better results than the ANN-BP and ELM at the monthly and daily scales for 

streamflow simulation. 

3. Materials and methods 

3.1 Case Study and Data Description 

Kano State has a large, continuous area of land, i.e., a total of 20,131 km², positioned in the northern 

region of Nigeria. It is the most populous city in Nigeria, with a population density of 470 people per 

square kilometer, a total population exceeding 9,383,682, and a growth rate of 2.9% per annum. The 

state borders to the Northeast, Northwest, Southwest, and Southeast with Jigawa, Katsina, Kaduna, and 

Bauchi states, respectively [2]. The state is positioned at the GPS coordinates of 120°0’0.0000” N and 

80°31’0.0012” E, equivalent to a latitude of 12.000000 and a longitude of 80.516667. The study map 

area is shown on (Figure 2). Kano state's temperature mainly varies between a low of 15.80 °C and a 

high of 330 °C. The state has a long dry season and an average rainy season of 4 to 5 months. The 

metropolis of the state has a mean annual rainfall of almost 800mm. The primary reservoirs in the state 

are in the watershed of the Challawa River, Jakara River, and Watari River. The runoff from the city is 

studied and determined for these three reservoirs. 

 

 

 

 

 

 

 

                                                             

 

Figure 2: Study Map and Locations 
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3.2 Methodologies 

Streamflow forecasting plays a critical role in hydrology and water resources management, as it 

supports decision-making processes related to flood control, reservoir operations, irrigation planning, 

and sustainable water allocation. Accurate and timely predictions are crucial for mitigating the adverse 

impacts of hydrological extremes and ensuring the optimal utilization of water resources. In this study, 

four machine learning algorithms; ANN, SVM, GPR, and SWR, viz: were employed to model and 

forecast streamflow discharge based on meteorological input variables, including rainfall and 

temperature (Figure 3). These models were selected due to their ability to capture nonlinear and 

complex relationships in hydrological systems. Despite the potential of these models, several 

methodological challenges must be addressed to ensure prediction accuracy. One major issue is the 

quality and availability of historical data, which directly influences model performance; missing values, 

noise, and inconsistent records can significantly distort model training and outputs. Another critical 

challenge is the non-stationarity of streamflow data, which often exhibits temporal fluctuations due to 

changing climatic and land-use conditions. This variability complicates the model's ability to generalize 

over time. Proper data preprocessing, including normalization, outlier removal, and feature 

engineering, is crucial for enhancing data quality and model robustness. Additionally, model selection 

plays a critical role; choosing the most suitable algorithm requires a balance between accuracy, 

interpretability, and computational efficiency. Equally important is model calibration, which involves 

tuning hyperparameters to optimize performance and prevent overfitting. To address these challenges, 

this study implemented a systematic modeling framework involving training, validation, and testing 

phases, using statistical evaluation metrics such as the PCC, MAE, and MSE to assess model 

performance. Cross-validation techniques and visual tools, such as response curves and scatter plots, 

were also employed to ensure reliability and interpretability. Furthermore, ensemble learning 

techniques were explored to assess their potential in enhancing prediction performance by combining 

the strengths of individual models. The adopted methodology provides a comprehensive foundation for 

developing data-driven streamflow forecasting tools with enhanced accuracy and reliability under 

varying hydrological conditions. 

3.3 Data Processing 

The data is scaled during normalization to a point where it is dimensionless, meaning all characteristics 

or variables are on the same scale. This is significant because some algorithms may experience 

numerical instability when features have various units or orders of magnitude. You prevent any 

characteristic from having an undue influence on the model by normalizing the data. Before 

implementing the AI-based models, normalization is a crucial step. This normalization aims to reduce 

data redundancy and enhance its integrity. Proceeding with the pre-processing procedure has two main 

reasons [12]. According to [13], this pre-processing step is vital, as it ensures that the variables receive 

equal attention during training, thereby enhancing the algorithm's efficiency. For this research, the 

min-max scaling normalization method was employed. 

3.4 Model Development  

Researchers are typically interested in determining predicted output from inputs based on historical 

data in hydrological forecasting models. The objective in predicting streamflow using predecessor 

values is to generalize a relationship of the following form [14]. The selection of a suitable model input 

vector plays a crucial role in the practical application of AI techniques, as it is typical of any data-driven 

forecasting model, providing the fundamental details about the system being modeled. The number of 

flow values identified as input variables is used to determine the runoff lags that significantly affect the 

expected flow. The variables used in the research include discharge (Q) as the output variable, 

temperature (Temp) as the input variable, and rainfall (R) as the input variable. The correct model input 

must be chosen when using an AI model for forecasting streamflow to achieve a positive result. 

Moreover, this employed four models for streamflow prediction, namely ANN, SVM, SWR, and GPR. A 

feed-forward ANN model of a typical three-layer ANN was built for the determination of predicted 

monthly discharge time series. The conventional BP training algorithm is a supervised training 
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mechanism commonly used in most engineering applications [14]. The training epoch in this paper is 

set to 500, and the training algorithm is a scaled conjugate gradient algorithm. The neurons used a Tan-

sigmoid transfer function in the hidden layer, while the linear transfer function determines the output 

layer. The determination of the ideal number of neurons involves a trial-and-error method in the hidden 

layer, where the number of hidden neurons is altered from 2 to 13. The training and testing sets are 

further divided to form training data. The hidden neurons were decided upon using the cross-validation 

approach and the RMSE.  This shows that the performance of the feed-forward model is not significantly 

impacted by the number assigned to the hidden layer. When three hidden neurons are present, the 

training error is the closest to the testing error. 

 

Figure 3: The proposed methodology flowchart 

    The link between input and output, as explained by the most excellent computer program, can be 

created using GPR. The correct GPR evolution parameters must be used in this research to develop the 

best monthly streamflow time series forecasting model. Although the algorithm's fine-tuning is the 

focus of this research, several startup and run approaches were identified, and the chosen GP 

parameters are reported. the evolutionary processes, which include setting the genetic operators, fitness 

function, including crossover, reproduction, and mutation, as well as termination, are comparable to 

GAs. When utilizing SVM, a Kernel function must be chosen from the qualifying functions. It was stated 

by [15] that various Kernels in SVR for modeling rainfall-runoff, showing that the radial basis function 

(RBF) performs better than other Kernel functions. The selection of model parameters has a significant 

impact on SVM models. There aren't any organized techniques for choosing parameters, though. As a 

result, a calibration of the model parameters was performed for this work. 

3.5 Theory of Models 

3.5.1 Artificial Neural Network (ANN) 

ANNs are admired by biological neural networks; however, ANNs come along with neurons, linking the 

process of information to search for a relationship between input and output variables. ANN is among 

the most efficient tools for data-driven methods to model a nonlinear system [16]. ANN model as a 

nonlinear mapping for literature and observation to estimate the fourth coming values [17].  
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3.5.2 Gaussian Process Regression (GPR)  

Gaussian process regression (GPR) is a non-parametric machine learning method that can be applied 

for modeling and multivariate regression problems. Compared to other techniques, such as SVR and 

random forests, GPR often demonstrates superior performance. Its Gaussian process framework 

enables the approximation of personalized probability distributions required for robust and flexible 

regression models. This makes GPR a valuable technique for solving many complex engineering 

challenges [18].  

3.5.3 Support Vector Machine (SVM) 

SVMs became paramount in the most widely used statistical learning performance familiarized in 1995 

[19]. The SVM's ability to form accurate generalizations makes it a valuable tool for applications in 

various scientific fields. For those less disposed to over-fitting of data. While SVMs allow for concurrent 

error minimization, the use of a kernel function makes the original inputs separable in a plotted high-

dimensional feature dimensional [19] 

3.5.4 Stepwise Regression (SWR) 

SWR serves as the appropriate method for selecting both the combination of backward and forward 

techniques for problem-solving. SWR became one of the most popular models at a unique stretch; it 

became an alteration of both regressive and headlong ranges. So that after a variable is added to each 

contender, the candidate variables in the model must be checked to see if their significance is reduced 

below the actual tolerance level. having to find mutable, which is non-significant, it must be removed 

from the model [20].  

3.5.5 Ensemble Learning Technique (ELT) 

Ensemble models are a set of models that are used to provide a prediction that is often more accurate 

and robust than any individual model by combining the predictions of numerous base models (also 

known as weak learners). Ensemble models are a set of learning classifiers that combine their decisions 

to obtain more accurate and reliable predictions in supervised and unsupervised learning problems [21]. 

It is known that combining two or more predictors can enhance prediction performance for a time series 

[22]. The literature indicates that ensembling the outputs of two or more models is a more effective 

method, which can enhance the prediction efficiency of time series (Figure 4).  

Technique 1: Simple averaging ensemble (SAE) 

    The principle behind SAE is to take the average of the forecasts from these base models to arrive at a 

final prediction. SAE often relies on a few base models, which can be various algorithms or variations 

of a single method with different hyperparameters. Decision trees, support vector machines, random 

forests, and neural networks are examples of base models. SAE can be applied to problems involving 

both regression and classification. In this paper, all four models — ANN, GPR, SVM, and SWR — were 

tested and trained independently, and their average outputs were compared and evaluated against the 

observed test values. See the formula as shown below (Eq.1). 

𝑓(𝑡) =
1

𝑁
∑𝑓(𝑡𝑖)                                                                         (1) 

N (number of models), ti = Output of single models (ANN, GPR, SVR, and SWR), f(t)= time  

Technique 2: Weighted average ensemble (WAE). 

    This prediction is achieved by assigning different weights to the various outputs based on the level of 

significance of each production. When creating the final prediction in a weighted averaging ensemble 

model, the prediction from each base model is multiplied by its weight first. The aim is to assign higher 

weights to more reliable or accurate models and lower weights to those that are less reliable. WAE is 
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used in improving predictive accuracy and robustness. WAE is applicable in classification, regression, 

and anomaly detection. The weighted average ensemble is expressed as in (Eq.2).  

𝑓(𝑡) = ∑ 𝑈𝑖𝑓𝑖(𝑡)𝑁
𝐼=1                                                    (2) 

Where Ui is obtained from a formula below, Ui= Weight given on the output of the ith model, DZi= 

Performance efficiency of the ith single model (Eq. 3). 

𝑈𝑖 = 𝐷𝑧𝑖/∑ 𝐷𝑧𝑖𝑛
𝑖=1                                                                                                        (3) 

Technique 3: Non-linear neural ensemble (NNE) 

    NNE model is another techniques using neural network models that are coupled or integrated non-

linearly to boost a machine learning system's overall performance. This ensemble strategy is frequently 

employed in deep learning and machine learning to enhance the robustness and predictive capabilities 

of models. For the sake of a non-neural ensemble technique, non-linear averaging is done by training a 

separate neural network. The selected model output is used to feed the input of the neural ensemble 

model; one neuron in the input layer is assigned to all the selected models. In the case of the FFNN 

ensemble model, the activation function is tangent sigmoid for both hidden and output layers. The 

network can easily be trained through the application of the BP algorithm. Moreover, using a trial-and-

error procedure, the best structure and epoch number of the ensemble network can be obtained. For 

the sake of this study, the non-linear ensemble used is FFNN because it’s a standard AI method. 

 

Figure 4: Flowchart for ELT 

3.6 Evaluation Performance  

To evaluate the accuracy and reliability of the developed streamflow prediction models, three statistical 

performance metrics were employed. These metrics are widely recognized for assessing regression 

models and provide comprehensive insight into both the magnitude of prediction errors and the 

strength of the relationship between predicted and observed values. MSE measures the average of the 

squared differences between predicted and observed values, giving more weight to larger errors. This 

makes it especially useful in detecting models that produce occasional large deviations. A lower MSE 

value indicates that the model predictions are closer to the actual values, signifying higher accuracy. 

MAE calculates the average absolute difference between predicted and observed values. Unlike MSE, it 

treats all errors equally, offering a straightforward interpretation of the average size of the prediction 

errors. A lower MAE value reflects better model performance with fewer deviations from the actual 

observations. PCC assesses the strength and direction of the linear relationship between predicted and 

observed values. A PCC value closer to 1 indicates a strong positive correlation, meaning the model 

successfully captures the overall pattern and trend in the data. A high PCC confirms the model's ability 

to mirror the variability in streamflow behavior [23]. 
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4.0 Results and Discussion 

4.1. Result Application and Analysis 

Using the discharge (Q) data collected at Kano, ANN, GPR, SVM, and SWR models were constructed 

for comparison purposes. The following sections present the results and applications of Artificial 

Intelligence and regression models in streamflow prediction. The study's variables include temperature 

(TEMP) and rainfall (R) as input variables, while discharge (Q) is the output variable. Before modeling, 

both the input and target were normalized. As part of the preprocessing stage, the Unit Root Test-based 

Augmented Dickey-Fuller (ADF) test in E-Views was used to transform the data from non-stationary to 

stationary. The descriptive statistics of the datasets and critical data used in model development are 

shown in Table 1 [24], [25].  The most frequent and efficient input combinations with the target variable 

were examined using a correlation matrix in a conservative sensitivity analysis, as illustrated in Fig. 5. 

The matrix identifies the specific type of linear relationship between the variables. It indicates the 

primary indication for probable correlation between variable sets. Positive correlation values 

demonstrate direct associations between two variables, whereas a probability of less than 0.05 indicates 

a significant and stationary relationship. 

 

Table 1: Statistical relationship between the input and output parameters. 

Parameters Temp (oC) R (mm) Q (m3/s) 

Mean 0.00 -2E-16 0.01 

Median 0.00 0.00 0.00 

Standard Deviation 1.78 67.18 19.27 

Kurtosis 0.62 9.00 13.79 

Skewness 0.31 0.88 -0.35 

Range 11.60 744.20 247.80 

Minimum -5.00 -321.2 -140.8 

Maximum 6.60 423.00 107.00 

 

4.2. Preliminary Results  

It is crucial to guarantee the stability and consistency of the dataset to precisely execute the stochastic 

process and time series analysis when creating a model. Testing for unit roots and ensuring stationarity 

of all HMs variables was done using the Augmented Dickey-Fuller (ADF) analysis (see Table 2). This 

was done to get more trustworthy and accurate findings. [26] Both computational intelligence and 

numerical analysis depend heavily on stability analysis. Recently, feature selection methods have used 

stability analysis, and the current study used linear feature selection methods. 

Table 2: Input-output variable ADF tests 

Variables t-Statistic 5% Critical Value Prob Decision 

TEMP (OC) -2.00 -2.87 0.28 I (0) 

-17.56 -2.87 0.00 I (1) 

R (mm) -2.37 -2.87 0.15 I (0) 

-14.79 -2.87 0.00 I (1) 

Q (m3/s) -2.35 -2.87 0.1562 I (0) 
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-16.37 -2.87 0.00 I (1) 

 

    However, the results of the unit root test, presented in Table 2 (ADF), demonstrate that all variables 

are non-stationary at level I (0).  The procedure uses a least squares exogenous approach to create the 

Schwarz information criteria. Due to its link with Q (m3/s), the findings of all variables reached the 

stationarity level at the first difference, which was unexpected. The fact that the probability and t-

statistics values are above the critical values for all degrees of freedom lends credibility to the findings.  

According to [27], when Cronbach's alpha values surpass 0.7, a stationary test is deemed valid. It is clear 

from Table 2 that the means and variances of none of the variables are constant; to ensure stationarity, 

we must create the first difference. It is significant to highlight that ADF empowers analysts to select 

suitable modeling approaches and get more precise forecasts of the series' future values.  Although 

various nonlinear viable alternatives may be utilized based on the data's nature, the combination of 

input variables for the ADF test was selected using standard correlation analysis. The outcomes of this 

combination are shown in Equation 8 as presented in Figure 5. 

 

Figure 5: Matrix of correlations for the parameters used to model discharge (Q m3/s) 

4.3 Analysis of Predictive Models 

The practical assessment analysis results for prediction models are summarized in Table 3. While 

considering errors, the statistical indices (PCC, MSE, and MAE) are used to assess the models' capacity 

to predict outcomes and their effectiveness in making estimates. According to Table 3, almost all the 

combinations satisfy the model’s accuracy level in terms of the statistical requirements (M1, M2, and 

M3). Based on the results, it is acknowledged that these approaches can handle models with several 

unrestrained parameters, minimize the error function, and resolve data fitting issues. For highly 

complex nonlinear problems, they have proven to be an average solution. More than 50 per cent of the 

models met the statistical benchmarks for accuracy (MAE value less than 0.05). The obtained SVM, 

GPR, and SWR model combinations meet the criteria of MAE values less than 0.05. The ANN model's 

ANN-M1 and ANN-M2 both met the necessary standards. The GPR-M3, SVM-M2, ANN-M2, and SWR-

M1 models are the most effective models for predicting streamflow discharge (Q, m³/s), with MAE 

values of 0.034, 0.05, 0.037, and 0.037, respectively, in the training phase. The results indicate that the 

GPR-M3 model outperforms the other models, with a minimum MAE Value of 0.034 & 0.027 in both 

the calibration and verification phases. The results suggest that these approaches help minimize the 

error function by managing models with multiple uncontrolled parameters and addressing issues with 

data fitting. They have developed into a common strategy for extremely complex nonlinear situations. 
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Table 3: Result of the performance criteria in the first scenario 

Models Calibration phase Verification phase 
 

PCC MSE MAE PCC MSE MAE 

ANN-M1 0.16 0.01 0.04 0.20 0.01 0.03 

ANN-M2 0.34 0.01 0.04 0.63 0.01 0.03 

ANN-M3 0.24 0.01 0.05 0.40 0.01 0.04 

GPR-M1 0.01 0.01 0.04 0.56 0.01 0.03 

GPR-M2 0.40 0.00 0.04 0.65 0.01 0.03 

GPR-M3 0.53 0.00 0.03 0.65 0.00 0.03 

SVM-M1 0.04 0.01 0.04 0.12 0.01 0.03 

SVM-M2 0.30 0.01 0.04 0.58 0.01 0.03 

SVM-M3 0.30 0.01 0.04 0.59 0.01 0.03 

SWR-M1 0.01 0.01 0.04 0.59 0.01 0.03 

SWR-M2 0.30 0.01 0.04 0.58 0.01 0.03 

SWR-M3 0.30 0.01 0.04 0.58 0.01 0.03 

 

   Furthermore, as shown in Figure 6, the error plot can be used to depict the maximum error calculated 

by each model, providing a comparison of all four models employed in this study. The bar chart 

illustrates the MAE for various machine learning models during both the calibration (red bars) and 

verification (blue bars) phases of streamflow prediction. Most models show lower MAE values in the 

verification phase, indicating good generalization and minimal overfitting. However, one model (second 

from the left) exhibits significantly higher MAE in both phases, indicating poor performance and 

potential data sensitivity issues. The models toward the right demonstrate consistent and lower MAE 

values across both phases, reflecting higher accuracy and robustness in streamflow forecasting. 

 

  

 

 

 

 

 

 

 

 

 

Figure 6: Error plot for all four best models 
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4.4 Result of the ELT model 

The accuracy of standalone models was improved in the second scenario of this study by using an 

ensemble, which offered more accurate predictions by combining the strengths of various models. The 

SA and the NNE model strengths were associated with WAE. The maximum level of accuracy, as shown 

on Table 4 for MAE (100%), was attained for SA-GPR, WA-GPR, and 1I–NN–GPR. This wasn’t 

unanticipated given that 1I – NN-GPR is adaptable to changes in environmental conditions or input 

data and can manage a wide range of input data types and formats. Figure 7 presents the performance 

of all the models, comparing the results of the four models used in this study. An error plot can be used 

to depict the maximum error calculated by each model, which is summed up in the first-order ensemble 

techniques. Thus, ensemble techniques are more adaptable and flexible in providing solutions to 

challenging issues related to discharge (Q).  

Table 4: First-order ensemble algorithm result 

Model Calibration Phase Verification Phase 

  PCC MSE MAE PCC MSE MAE 

SA-ANN 0.31 0.01 0.04 0.54 0.01 0.03 

SA-GPR 0.48 0.00 0.03 0.67 0.01 0.03 

SA-SVM 0.30 0.01 0.04 0.59 0.01 0.03 

SA-SWR 0.30 0.01 0.04 0.58 0.01 0.03 

WA-ANN 0.31 0.17 0.39 0.54 0.17 0.38 

WA-GPR 0.48 0.01 0.05 0.67 0.01 0.05 

WA-SVM 0.30 0.04 0.19 0.59 0.04 0.19 

WA-SWR 0.30 0.05 0.21 0.58 0.05 0.21 

1I - NN-ANN 0.31 0.01 0.04 0.58 0.01 0.03 

1I - NN-GPR 0.53 0.00 0.03 0.65 0.00 0.03 

1I - NN-SVM 0.33 0.01 0.04 0.48 0.01 0.03 

1I - NN-SWR 0.31 0.01 0.04 0.58 0.01 0.03 

 

As can be seen from Table 4, in SA techniques the SA-GPR outperforms all other SA techniques with 

minimum MAE of 0.034 & 0.028 in both calibration and verification phase, in addition looking how 

the WA performance is effective, it was also depicted that WAA-GPR outperforms all other WA 

techniques with minimum MAE of 0.052 & 0.049 in both calibration and verification phase. In first-

order NNE, it was shown that the 1I - NN-GPR surpasses other first-order NNE with MAE of 0.034 & 

0.027 in both calibration and verification phases. In conclusion, due to the lower performance of PCC 

in both SA, WA, and NN ensemble techniques, Table 5 presents the second-order result of NN ensemble 

techniques As shown in Figure 6, which compares all four models used in this study, the error plot can 

be used to depict the maximum error calculated by each model in the first-order ensemble techniques. 
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Figure 7: Error plot for the first-order ensemble algorithm 

Table 5: Result of the second other ensemble algorithm of NN 

Model Calibration Phase Verification Phase 
PCC MSE MAE PCC MSE MAE 

2I - NN-ANN 1.00 8.51E-20 2.48E-10 1.00 7.57E-20 2.23E-10 

2I - NN-GPR 1.00 8.51E-20 2.48E-10 1.00 7.57E-20 2.23E-10 

2I - NN-SVM 1.00 8.51E-20 2.48E-10 1.00 7.57E-20 2.23E-10 

2I - NN-SWR 1.00 8.51E-20 2.48E-10 1.00 7.57E-20 2.23E-10 

 

As shown in Table 5, all models achieve the same level of accuracy as the second-order ensemble 

algorithm with a PCC of 1 in the calibration phase, nevertheless, except for 2I-NN-GPR, which 

outperforms all other second-order ensembles with the highest value of PCC equal to 1 in both the 

calibration and verification phases. Scatter plots can identify trends, linkages, and patterns in data and 

are frequently used in data analysis and scientific research. The response curve shows a robust 

correlation between the experimental and predicted values (R = 1), as seen in Figure 8. The response 

plot can also demonstrate the contemporaneous agreement between the two variables (measured and 

expected), as shown in Figures 9. 
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Figure 8: Scatter plot of the second-order ensemble algorithm 

 

Figure 9: Time series of the second-order ensemble algorithm 

   Further examination, as shown in Figure 10, can be conducted to assess the expected accuracy of the 

models during the testing phase. The plot has shown that ANN-M2, SVM-M2, GPR-M3, and SWR-M2 

demonstrated contemporaneous agreement with a similar pattern after accounting for the observed 

strength values. In the literature on civil and material engineering, time series are frequently utilized, 

for instance. However, [28]–[31] highlighted the necessity of understanding time series to grasp the 

precision of a data set.  Using the radar diagram, all of the models were compared during the modeling 

phase using the PCC performance evaluation criterion. In Figure 10, the second-order ensemble model 

outperforms other models in terms of prediction accuracy. This article explains why modeling with AI 

is suitable for engineering and academic research. 
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Figure 10: Radar plots for second-order ensemble techniques. 

5.0 Conclusion 

In this research, the primary focus was on the application and comparative analysis of multiple machine 

learning models, namely ANN, SWR, SVR, and GPR, for predicting streamflow discharge based on 

meteorological input variables such as temperature and rainfall. The results revealed that all selected 

models demonstrated acceptable performance, as supported by statistical evaluation metrics, including 

the PCC, MAE, and MSE, which underscored their predictive capability. Notably, the GPR-M3 model 

outperformed others, achieving the lowest MAE values of 0.034 in the calibration phase and 0.027 

during verification, indicating its strong ability to capture the underlying non-linear patterns in 

streamflow data. Furthermore, the study showed that employing ensemble modeling techniques 

significantly enhanced the performance of individual models. Second-order ensemble approaches 

demonstrated remarkable accuracy, with some models achieving a perfect PCC of 1 in both the 

calibration and verification stages. Visual validation tools such as scatter plots, response curves, and 

radar charts further affirmed the robustness, precision, and consistency of the models. However, this 

study is limited by the scale and scope of the dataset used, which was derived from a specific geographic 

and climatic region, potentially affecting the generalizability of the models to other areas with different 

hydrological behaviors. Also, the models did not account for human interventions, such as dam 

operations or land-use changes, which could influence streamflow dynamics. Future studies should 

explore hybrid deep learning frameworks, integrate remote sensing data and catchment-specific 

physical parameters, and investigate model transferability across multiple catchments. It is also 

recommended to enhance real-time forecasting capabilities through data assimilation and to adopt 

uncertainty quantification techniques for improved decision-making in water resources management. 
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